
Study of a targeted attack
on a Russian rail freight
operator

Doctor Web Head Office

2-12A, 3rd str. Yamskogo polya, Moscow, Russia, 125124

Website: www.drweb.com

Phone: +7 (495) 789-45-87

Refer to the official website for regional and international office information.

Study of a targeted attack on a Russian rail freight operator

9/3/2024

© Doctor Web, Ltd., 2024. All rights reserved.

This document is the property of Doctor Web, Ltd. (hereinafter - Doctor Web). No part of this

document may be reproduced, published or transmitted in any form or by any means for any

purpose other than the purchaser's personal use without proper attribution.

Doctor Web develops and distributes Dr.Web information security solutions which provide

efficient protection from malicious software and spam.

Doctor Web customers can be found among home users from all over the world and in

government enterprises, small companies and nationwide corporations.

Dr.Web antivirus solutions are well known since 1992 for continuing excellence in malware

detection and compliance with international information security standards. State certificates

and awards received by the Dr.Web solutions, as well as the globally widespread use of our

products are the best evidence of exceptional trust to the company products.

3
3

Introduction

Spear phishing is a popular method of delivering malware to computers in large organizations.

It differs from regular phishing in that the attackers gather information in advance and

personalize the message they send to encourage the victim to perform an action that will

result in a security breach. The primary targets are either high-level employees with access to

valuable information, or employees in departments that interact with multiple recipients. This

is especially true for HR staff who receive many emails from strangers that have attachments

in a variety of formats. This vector was chosen by the threat actors to attack a major freight

operator in March 2024.

4
4

General Information About the Attack and the Tools Involved

In March 2024, a large Russian company in the rail freight industry contacted Doctor Web. A

suspicious email with an attachment caught the attention of their information security

department. After trying to determine the threat posed by the attached file, they contacted

our specialists. After reviewing the request, our analysts concluded that the company had

almost been the victim of spear phishing. The goal of the perpetrators was to gather system

information and launch modular malware on a compromised PC.

To carry out the attack, the criminals sent a phishing email disguised as a jobseeker's résumé

to the company's email address. Attached to the email was an archive purporting to contain a

PDF file with a job application. That file had the so-called “double” extension of .pdf.lnk.

Hiding malicious objects by using double extensions is a common tactic employed by

attackers to fool their victims. By default, Windows hides file extensions as a convenience to

the user. And when a file has a “double” extension, the system only hides the last extension. In

this case, the victim could see the first extension—.pdf, while the .lnk extension was

hidden. Moreover, even if the display of full filenames is enabled, the .lnk extension is always

hidden by the operating system.

Metadata stored in an lnk file

The real .lnk extension is an extension for shortcuts in Windows. In the Target field, you can

specify the path to any operating system object, such as an executable file, and run it with the

required parameters. This attack covertly launched the PowerShell command prompt, which

downloaded from the attackers' website two malicious scripts, each of which launched its own

payload.

5
5

Attack chain

The first was a decoy .pdf file and executable file called YandexUpdater.exe, which posed

as a component for updating Yandex Browser (the name of the real component is

service_update.exe). This executable is a malware dropper called Trojan.Packed2.46324,

which, after conducting a series of checks to determine whether it is running in an emulated

environment and whether debugging software is present, unpacks Trojan.Siggen28.53599

on the compromised system. The latter has remote control capabilities, collects system

information and downloads various malicious modules. In addition to these functions, the

trojan also has anti-debugging capabilities. If antivirus, virtual machine and debugger

processes are detected, the trojan overwrites its file with zeros and deletes it and the folder in

which it was stored.

6
6

Decoy PDF file

The second payload consisted of a decoy PDF file and Trojan.Siggen27.11306. This trojan is a

dynamic library (DLL) with an encrypted payload. A unique feature of this trojan is that it

exploits the vulnerability of Yandex Browser to DLL Search Order Hijacking. In Windows, DLL

files are libraries that applications use to store functions, variables and interface elements.

When launched, the applications search for libraries in several data stores in a specific order,

so attackers can try to “jump the queue” and place a malicious library in the folder where DLL

searches are prioritized.

Simplified DLL search prioritization scheme

7
7

This trojan is stored in the hidden %LOCALAPPDATA%

\Yandex\YandexBrowser\Application folder under the name Wldp.dll. This is the

directory where Yandex Browser is installed and where the browser looks for the libraries it

needs at startup. In turn, the legitimate Wldp.dll library, whose function is to ensure the

security of application startup, is an OS system library and is located in the %WINDIR%

\System32 folder. Since the malicious library is located in the Yandex Browser installation

folder, it is loaded first. At the same time, it gets all the permissions of the main application: it

can execute commands and create processes from the context of the browser, as well as

inherit firewall rules for Internet access.

After the browser is launched, the malicious Wldp.dll library decrypts the payload

embedded in it. Note that the decryption is done twice. The first time it is done using a key

generated from the hash of the path where the malicious DLL is located, and then using a

global key embedded in the body of the trojan. The decryption results in shell code, the

execution of which allows attackers to run an application, written in the .NET language, on the

compromised system. This executable, in turn, downloads malware from the network.

Unfortunately, at the time of our investigation, the server that the downloader was

communicating with was down, and we were unable to determine what specific trojan was

being downloaded in this case.

Having discovered this vulnerability in Yandex Browser, we submitted our findings to Yandex.

The developers promptly released an updated version of Yandex Browser (24.7.1.380) where

this vulnerability (CVE-2024-6473) is fixed.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-6473

8
8

Operating Routine of Discovered Malware Samples

Trojan.Packed2.46324

A malicious Windows malware dropper program written in C++. The executable file is

obfuscated with XOR encryption and packed with a custom packer. It is used to deliver

Trojan.Siggen28.53599 to compromised PCs.

Trojan unpacking

The trojan is packed using a custom packer that is characterized by the zero physical size of

sections bearing “traditional” names such as “.text”, “.rdata” and others.

In this case, one of the following sections —“.(>@”—contains some code. It also contains the

entry point.

9
9

Once initialized, the source code containing the original entry point is extracted into empty

sections.

Operating routine

Initialization

The trojan reads the KUSER_SHARED_DATA struct, which contains various system information.

The trojan checks the value of this struct’s NtMajorVersion field, which must equal 10.

It then initializes the struct containing the pointers to the ntdll.dll, kernel32.dll,

user32.dll, ole32.dll libraries, which are used to call functions from this struct. Then the

three threads responsible for anti-debugging are initialized. After that, the struct for working

with the wevtapi.dll library is initialized and pointers to the libraries and various functions

are obtained.

Use of WinAPI

The trojan uses WinAPI system functions via a wrapper struct that contains a table of

functions, library pointers, library load addresses, and an anti-debugging flag.

The table contains the following functions:

· Functions for working with WinAPI, i.e., finding a function pointer and calling it

· Helper functions—ad hoc implementation of the LoadLibrary and GetProcAddress

calls

10
10

· The configuration of input parameters for a range of functions

When launched, the trojan initializes its main struct. It does this by using a modified CRC32

algorithm to find library load addresses in the PEB_LDR_DATA system struct. The trojan uses

two methods to access functions stored in the libraries:

· Ad hoc implementation of the LoadLibrary and GetProcAddress calls

The trojan has two functions that mimic the implementation of LoadLibrary and

GetProcAddress. This method is used when the trojan needs access to an API contained in a

library that has not yet been loaded into the process memory.

· Searching for libraries by their hashes in the PEB_LDR_DATA system struct

The trojan searches for a required library in the PEB_LDR_DATA struct using the

InMemoryOrderModuleList list, which contains pointers to all the libraries loaded into the

process memory and their names. The library name is matched by comparing the hash value

generated using the modified CRC32 algorithm with the requisite library name. Next, the

required library function is found in the table of exported library functions, in which case the

function names are hashed in the same way. The library name and function are read using the

modified CRC32 algorithm.

Debugger evasion

Checking the debug registers

The trojan obtains the context of the parent thread and checks that the values of the Dr0–Dr7

registers are set to 0.

Checking for a debugged environment

In the KUSER_SHARED_DATA struct, the trojan checks the first two bits in the

KdDebuggerEnabled field; the value of these bits must be set to 0.

Using the NtQueryInformationProcess function, the trojan checks for the presence of a

debugger by reading various parameters of the PROCESSINFOCLASS struct:

ProcessDebugFlags, ProcessDebugPort, ProcessDebugObjectHandle,

ProcessTlsInformation.

Checking for debugger drivers

The trojan scans the %WINDIR%\System32\drivers directory for files that indicate the

presence of debugging software. It then calculates the filename hash using the modified

CRC32 algorithm and compares the result to the blacklist hashes.

Each check is timed, and if the check fails, a flag is set in a global variable that is checked at

various stages of execution. If the flag check fails, the trojan terminates its process.

11
11

Environment check

To protect itself from running in a virtualized environment, the trojan scans a number of OS

logs, using the wevtapi.dll library. It searches for the below strings:

In the logs Microsoft-Windows-Shell-Core/Operational, System, Application:

· \npcap.sys

· Wireshark

· API_Monitor

· apimonitor

· API Monitor

· rohitab.com

· hex-rays.com

· processhacker.sys

· ProcessHacker

· PROCMON2

ida64.exe

In the logs Microsoft-Windows-Storage-Storport/Operational, System,

Microsoft-Windows-Storsvc/Diagnostic, Microsoft-Windows-StorageSpaces-

Driver/Operational, Microsoft-Windows-Partition/Diagnostic, Microsoft-

Windows-Kernel-PnP/Configuration, Application:

· VMTools

· VMUpgradeHelper

· VirtualBox Guest

· VBoxService.exe

· VBOX HARDDISK

· _FLOPPY_

· \VMWVM

· _VBOX&

· NECVMWar

· prl_

· VMware

Additionally, in the Application log:

· VMware Player

· VMware NAT Service

· \Device\VBoxNet

· Oracle VM VirtualBox

12
12

After performing these checks, the dropper unpacks Trojan.Siggen28.53599, the payload

contained in the resources. This is done using a modified RC4 algorithm; the key for the cipher

is 8 bytes long. The dropper then decrypts the payload configuration, which is encrypted using

the XOR cipher. The resulting configuration is stored in a string labeled with the characters

"DANTEMARKER", which are overwritten.

After all the prep work is done, the dropper projects the payload into the memory and

transfers control to it.

13
13

Trojan.Siggen28.53599

A malicious program for Windows written in C++. The main functionality of the trojan is to

download and manage modules received from its C2 server.

Operating routine

The trojan has a number of basic and helper structs that are initialized at startup and stored as

pointers in global variables.

Basic structs:

WinAPI wrapper

The trojan uses WinAPI system functions via a wrapper struct that contains a table of

functions, library pointers, library load addresses, and an anti-debugging flag.

The table contains the following functions:

· Functions for working with WinAPI, i.e., for finding a function pointer and calling it

· Helper functions—the ad hoc implementation of the LoadLibrary and

GetProcAddress calls

· The configuration of the input parameters for a range of functions

When launched, the trojan initializes its main struct. It does this by using a modified CRC32

algorithm to find library load addresses in the PEB_LDR_DATA system struct. The trojan uses

two methods to access functions stored in the libraries:

· Ad hoc implementation of the LoadLibrary and GetProcAddress calls

The trojan has two functions that mimic the implementation of LoadLibrary and

GetProcAddress. This method is used when the trojan needs access to an API contained in a

library that has not yet been loaded into the process memory.

· Searching for libraries by their hashes in the PEB_LDR_DATA system struct

The trojan searches for a required library in the PEB_LDR_DATA struct, using the

InMemoryOrderModuleList list, which contains pointers to all the libraries loaded into the

process memory and their names. The library name is matched by comparing the hash value

generated using the modified CRC32 algorithm with the requisite library name. Next, the

required library function is found in the table of exported library functions, in which case the

function names are hashed in the same way. The library name and function are read using the

modified CRC32 algorithm.

14
14

Logger struct

This is a struct whose main purpose is to generate the application log. The log contains

information about errors and the step currently being executed.

System information collector struct

The main purpose of this struct is to collect system information and send it to the C2 server.

C2 server communication struct

This struct ensures the interaction with the C2 server. It contains a struct for working with the

winhttp.dll library and information about the control server: the port, IP address and

routing table.

Module and configuration struct

The main function of this struct is to manage the operation of modules and their

configurations. It contains vectors that describe the modules, their configuration, and auxiliary

system information.

Manager struct

The main purpose of this struct is to control program operation and ensure interaction

between other structs. It holds pointers to all the other primary structs: WinAPI wrapper,

logger, communication, and configuration.

Helper structs:

Structs for working with cryptography: SHA-1, SHA-256

Structs for working with auxiliary libraries: bcrypt.dll, winhttp.dll

Structs for storing various flags

Debugger evasion

When launched, the trojan also initializes 3 threads to evade debuggers:

Checking the debug registers

The trojan obtains the context of the parent thread and checks that the values of the Dr0–Dr7

registers are set to 0.

15
15

Checking for debugged environment

In the KUSER_SHARED_DATA struct, the trojan checks the first two bits in the

KdDebuggerEnabled field; the value of these bits must be set to 0.

Using the NtQueryInformationProcess function, the trojan checks for the presence of a

debugger by reading various parameters of the PROCESSINFOCLASS struct:

ProcessDebugFlags, ProcessDebugPort, ProcessDebugObjectHandle,

ProcessTlsInformation.

Checking for debugger drivers

The trojan scans the %WINDIR%\System32\drivers directory for files that indicate the

presence of debugging software. It then calculates the filename hash, using the modified

CRC32 algorithm, and compares the result to the blacklist hashes.

Checking for a copy of the trojan in the system

After initialization, the trojan attempts to create a mutex which is a Base64 SHA-1 encoded

hash of the MachineGuid string value. If the attempt to capture the mutex fails, the line

"Found another agent running. Exiting..." is written to the application log and

the trojan is terminated.

Verifying keys and creating a handshake

The trojan checks for an existing handshake. This is done by accessing the key in the

"Microsoft Software Key Storage Provider" CNG key storage, using the

NCryptOpenKey function. The key name is a SHA-256 hash of the MachineGuid value. If

such a key does not exist, the availability of the network connection is checked: if the

connection is established, the trojan initiates the creation of the handshake:

· A copy of the RSA internal key from the “Microsoft Software Key Storage

Provider” CNG key storage is created

· A key is received from the server

· This key is stored in the storage with a name corresponding to the SHA-256 hash of the

MachineGuid value.

The trojan parses the incoming packet for a new C2 server address and port number. Once the

handshake is established, the following system information is sent to the C2 server: CPU

architecture, OS name, user interface type, installed application identifiers, disk information,

user names, and locale.

16
16

Basic functions

The trojan performs the following actions:

· Loads and unloads modules

· Sends messages to the C2 server about its operation or errors

· Changes the configuration of modules

· Updates the trojan body, if necessary

Module structure and configuration

A module is a dynamic library that is projected into the memory and has the following

exportable functions:

· Start

· Stop

· Configure

· GetID

· GetStatus

· SetStatus

· GetStarted

· GetHandler

· Destroy

· PushErrorCMR

The module identifier indicates its function, i.e., knowing the identifier, you can determine

which tasks are sent by the C2 server.

Identifier Purpose

238 Inject

27 Purpose unknown

44 Purpose unknown

17
17

JSON with module configuration

{
 "triggers": [
 {
 "schedule": "<str_value>",
 "process": "<str_value>",
 "repetitions": "<int_value>",
 "sendCmr": {
 "name": "<str_value>",
 "interval": "<int_value>"
 }
 }
]
}

Result of the module’s execution

After the module completes its task, it generates a response

{
 "CommandModuleResponse": "<str_value>",
 "requestId": "<int_value>",
 "moduleId": "<int_value>",
 "exitCode": "<int_value>",
 "info": "Error" //this field is only shown if there was an error in the
module’s operation; otherwise this field is missing
}

Trojan update

While in operation, the trojan checks the availability of its update flag. If this flag is set, the

trojan performs a series of system checks, and, based on the results, selects one of the two

update strategies. If antivirus software is detected on the compromised PC, the trojan is

updated through the loading of shellcode; otherwise, it is updated using the Inject module.

Checking for antivirus software

The trojan body contains a list of hashes of antivirus program names. When scanning for

antivirus software, the trojan obtains a list of processes and calculates the hashes of running

applications, which are compared to the following hardcoded list:

· msmpeng

· mssense

· avastsvc

· dwservice

· avp

· nortonsecurity

· coreserviceshell

· avguard

· fshoster32

18
18

· vsserv

· mbam

· adawareservice

· avgsvc

· wrsa

Shellcode for directory removal

Input arguments:

· directory name

Actions performed:

· Looks up the kernel32.dll library address in the PEB_LDR_DATA struct

· Gets the functions for the shellcode’s operation from the library export results, where the

library name and function names are determined by their hashes

· Determines the path to the %LOCALAPPDATA%\EROCS\ directory

· Overwrites with zeros and deletes all the files in the specified directory

· Deletes the directory itself

Shellcode for restarting the trojan

Actions performed:

· Gets the list of processes, using the NtQuerySystemInformation function (the

SystemProcessInformation parameter); checks that the UniqueProcessId field is

equal to 0x434F5245

· Deletes the HKEY_CURRENT_USER\Software\Uninstall key

Self-deletion

The trojan also has a self-deletion function that is triggered when the “deadline” registry key,

which is responsible for the trojan lifetime and is updated when a new command from the C2

server is received, is set to a specific value. The trojan also initiates the self-deletion procedure,

using WinAPI if errors are detected during the above checks. In this case, it performs the

following actions:

· Deletes its directory

· Deletes the handshake

· Deletes registry keys created while the trojan is in operation

Sending messages to the C2 server

The following User-Agent values are used by the trojan to send messages:

19
19

Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:88.0) Gecko/20100101
Firefox/88.0

Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:79.0) Gecko/20100101
Firefox/79.0

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/90.0.4430.93 Safari/537.3

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/80.0.3987.149 Safari/53

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/79.0.3945.88 Safari/537.3

All outgoing and incoming messages are encrypted using RSA.

20
20

Trojan.Siggen27.11306

A Windows trojan written in C. It is a DLL with an encrypted payload.

Operating routine

During initialization, the trojan sequentially creates two threads: one to decrypt the data and

the other to execute the payload. Initially, the payload is encrypted with a key that is the path

to the executable. During the first run, the trojan rebuilds the executable and covers it with

another layer of encryption. This encryption binds the payload to the infected PC. The

preparation phase consists of the following steps:

· A random salt is generated and stored in a new trojan body at a specific offset

· BIOS information is obtained

· This information is hashed using the salt generated in step 1, and the resulting hash is

the key to encrypt the payload

· The payload is encrypted using a “custom” key

After this transformation, the trojan has two decryption stages:

Stage 1: Decryption using constants from the compromised PC

· The salt stored in the trojan body is taken at a specific offset

· The salt is used to create a hash of the BIOS information

· The payload is decrypted

Stage 2: Decryption of the payload encrypted with the default key

· The ImagePathName value is extracted from the RTL_USER_PROCESS_PARAMETERS

struct—this field is a Unicode string whose length must be greater than 0x76 bytes (in

our case the filename was %LOCALAPPDATA%

\Yandex\YandexBrowser\Application\Wldp.dll)

· The last 0x76 bytes are read from the above value

· The hash of this value, which is the key for the symmetric algorithm, is generated

· The payload is decrypted

Encryption algorithm

A modified ChaCha20 algorithm is used as the symmetric encryption algorithm. The

modification consists of an additional layer for key initialization: the input key undergoes one

round of the algorithm, after which it becomes the key for the regular algorithm.

21
21

Hashing algorithm

A modified BLAKE2 algorithm is used as the hash function. The modification is that multiple

repetitive hashes of the input data are used.

Payload

The payload is a shellcode generated using https://github.com/TheWover/donut/tree/master.

This shellcode decrypts and downloads an MZPE file written in .NET, the main purpose of

which is to launch a trojan downloaded from the Internet. The main body of the shellcode can

be found at https://github.com/TheWover/donut/blob/master/loader_exe_x64.h.

The shellcode performs the following actions:

· Checks the flag responsible for executing the load in a separate or main thread

· Decrypts the MZPE file into a new allocated memory area

· Loads the ole32.dll, oleaut32.dll, wininet.dll, mscoree.dll, and

shell32.dll libraries, using the LoadLibraryA function

· Loads the WldpQueryDynamicCodeTrust, WldpIsClassInApprovedList,

EtwEventWrite and EtwEventUnregister functions, using the GetProcAddress

function

· Initializes the AMSI interface

o Loads amsi.dll

o Loads the AmsiInitialize, AmsiScanBuffer and AmsiScanString functions

· Reads the value of the AMSI bypass flag; this flag is not set in this sample

· Downloads the .NET application

The .NET stager downloads other malware, saves it under the name “YandexUpdater.exe”

and then launches it. At the time of our investigation, the file was no longer available on the

server from which the malware was supposed to be downloaded, so we were unable to

positively identify the downloaded software; however, we can assume that the file in question

could be the same Trojan.Packed2.46324.

https://github.com/TheWover/donut/tree/master
https://github.com/TheWover/donut/blob/master/loader_exe_x64.h

22
22

Conclusion

Thus, we see a multi-vector, multi-stage infection scheme with two different trojans that are

delivered to a compromised system when a file from a phishing email is opened. Despite the

complexity of the implementation, preventing and protecting against such attacks is quite

simple:

· Raise employee awareness of information security issues (carefully check links and

filenames, and do not open suspicious objects).

· Use software products that perform email filtering, such as Dr.Web Mail Security Suite, to

prevent the delivery of malicious emails and attachments.

· Install antivirus software, such as Dr.Web Desktop Security Suite and Dr.Web Server

Security Suite, on all network nodes, which will prevent a dangerous file from getting

through when users are working on the Internet or block suspicious activities on user

computers if a file was delivered on a USB drive.

· Regularly apply software updates that fix program bugs.

https://products.drweb.com/mailserver/
https://products.drweb.ru/workstations/
https://products.drweb.ru/fileserver/
https://products.drweb.ru/fileserver/

23
23

Appendix 1. Indicators of Compromise

SHA1 hashes

Trojan.Packed2.46324

34a4c5f28c7df23662962c3eaa0a15b7ae48b488: YandexUpdater.exe

Trojan.Siggen27.11306

60eaa4fd53b78227760864e6cf27b08bc4bdde72: Wldp.dll

Trojan.Siggen28.53599

853d6a17f0a1a4035b52699a447eeb4ad1ca6cf7

File artifacts

Job Application_202402523.rar)

Job Application.pdf.lnk

102fa066-cc9d-4a80-b3aa-12d5df196b42.pdf

Domains

infosecteam[.]info

IP addresses

109.248.147[.]132

	Introduction
	General Information About the Attack and the Tools Involved
	Operating Routine of Discovered Malware Samples
	Trojan.Packed2.46324
	Trojan.Siggen28.53599
	Trojan.Siggen27.11306

	Conclusion
	Appendix 1. Indicators of Compromise

