
Study of the Spyder modular

backdoor for targeted attacks

Doctor Web Head Office

2-12A, 3rd str. Yamskogo polya

Moscow, Russia

125124

Website: www.drweb.com

Phone: +7 (495) 789-45-87

Refer to the official website for regional and international office information.

Study of the Spyder modular backdoor for targeted attacks

3/4/2021

© Doctor Web, Ltd., 2021. All rights reserved.

This document is the property of Doctor Web, Ltd. (hereinafter - Doctor Web). No part of this

document may be reproduced, published or transmitted in any form or by any means for any

purpose without proper attribution.

Doctor Web develops and distributes Dr.Web information security solutions which provide

efficient protection from malicious software and spam.

Doctor Web customers can be found among home users from all over the world and in

government enterprises, small companies and nationwide corporations.

Dr.Web antivirus solutions are well known since 1992 for continuing excellence in malware

detection and compliance with international information security standards. State certificates and

awards received by the Dr.Web solutions, as well as the globally widespread use of our products

are the best evidence of exceptional trust to the company products.

3
3

Table of Contents

4Introduction

5Main features

8Conclusion

8BackDoor.Spyder.1 operating routine

28

Addendum No. 1 CA_cert information (certificate for establishing a

connection with the C&C server)

30Addendum No. 2. List of 32-bit modification debug messages

33Addendum No. 3. Indicators of compromise

4
4

Introduction

In December 2020, the Doctor Web virus laboratory was contacted by a telecommunications

company based in Central Asia after its employees discovered suspicious files on their corporate

network. During the examination, our analysts extracted and studied a malicious sample, which

turned out to be one of the backdoors used by the hacker group known as Winnti.

We already came across the malware Winnti uses when we studied the ShadowPad backdoor

samples that we found in the compromised network of a state institution in Kyrgyzstan. In

addition, earlier in the same network, we found another specialized backdoor called PlugX,

which has many intersections with ShadowPad in the code and network infrastructure. A

separate material was devoted to the comparative analysis of both families.

In this study, we analyze the uncovered malicious module, explore its algorithms and features,

and define its connection with other well-known tools of the Winnti APT group.

https://news.drweb.com/show/?lng=en&i=14048

5
5

Main features

On the infected device, the malicious module was located in the system directory C:

\Windows\System32 as oci.dll. Thus, the module was prepared for launch by the MSDTC

(Microsoft Distributed Transaction Coordinator) system service using the DLL Hijacking method.

According to our data, the file got to the computers in May 2020, but the method of initial

infection remains unknown. The Event Log contained records of the creation of services designed

to start and stop MSDTC, as well as for the backdoor execution.

Log Name: System

Source: Service Control Manager

Date: 23.11.2020 5:45:17

Event ID: 7045

Task Category: None

Level: Information

Keywords: Classic

User: <redacted>

Computer: <redacted>

Description:

A service was installed in the system.

Service Name: IIJVXRUMDIKZTTLAMONQ

Service File Name: net start msdtc

Service Type: user mode service

Service Start Type: demand start

Service Account: LocalSystem

Log Name: System

Source: Service Control Manager

Date: 23.11.2020 5:42:20

Event ID: 7045

Task Category: None

Level: Information

Keywords: Classic

User: <redacted>

Computer: <redacted>

Description:

A service was installed in the system.

Service Name: AVNUXWSHUNXUGGAUXBRE

Service File Name: net stop msdtc

Service Type: user mode service

Service Start Type: demand start

Service Account: LocalSystem

6
6

We also found traces of other services running that had random names. Their files were located

in directories like C:\Windows\Temp\<random1>\<random2>, where random1 and

random2 are strings of random length and random Latin characters. At the time of the study,

these services’ executable files were missing.

An interesting find was a service that indicates the use of a smbexec.py utility for remote code

execution from the Impacket set. The attackers used this tool to establish remote access to the

command shell in a semi-interactive mode.

The studied malicious sample was added to the Dr.Web virus database as BackDoor.Spyder.1.

In one of the discovered Spyder samples, the debug logging functions and messages remained.

Messages used when communicating with the C&C server contained the string "Spyder".

https://github.com/SecureAuthCorp/impacket

7
7

The backdoor is notable for a number of interesting features. First, oci.dll contains the main

PE module, but with missing file signatures. Erasing the header signatures was presumably done

to obstruct the backdoor detection in the device's memory. Secondly, the payload itself does

not carry malicious functionality, but serves to load and coordinate additional plug-ins received

from the С&С server. With these plug-ins, the backdoor performs its main tasks. Therefore, this

family has a modular structure, just like the other backdoor families used by Winnti — the

previously mentioned ShadowPad and PlugX.

Analysis of Spyder's network infrastructure revealed a link to other Winnti attacks. In particular,

the infrastructure used by the Crosswalk and ShadowPad backdoors described in the Positive

Technologies study corresponds with some of the Spyder samples. The graph below clearly

shows the identified intersections.

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/

8
8

Conclusion

The analyzed sample of BackDoor.Spyder.1 is notable primarily because its code does not

perform direct malicious functions. Its main tasks are to covertly operate within the infected

system and establish communication with the control server and then wait for operator

commands. At the same time, it has a modular structure that allows the operator to scale its

capabilities, providing any functionality depending on the needs of the attackers. The plug-ins

make the considered sample similar to ShadowPad and PlugX, which, together with the

intersections in their network infrastructures, allows us to conclude that it is used by Winnti.

BackDoor.Spyder.1 operating routine

A backdoor written in C++ and designed to run on 64-bit Microsoft Windows operating

systems. It is used for targeted attacks on information systems, collecting information about an

infected device, loading functional malicious modules, coordinating their work, and providing

communication with the C&C server. In the infected system, it exists as a DLL file and is loaded

by the system service using the DLL Hijacking method. After injection, it functions in the

computer's RAM.

The backdoor is a malicious DLL file. The function names in its export table duplicate the

exported functions of the apphelp.dll system library.

9
9

On the infected computer, the backdoor file was located in C:\Windows\System32\oci.dll

catalog. The file’s original name from the export table is dll. It was loaded by the MSDTC

system service using the DLL Hijacking method (Microsoft Distributed Transaction Coordinator

Service).

From a functional point of view, the sample is a loader for the main payload, which is stored in

the .data section as a DLL, with some elements of the DOS and PE headers equal to zero.

10
10

The loader operation

Loading is performed in a function designated as malmain_3 and called from the DLL entry

point via two transitional functions.

First, the header signatures are checked. If they are not standard, the ERROR_BAD_EXE_FORMAT

error value is set; however, this action does not affect the loader operation in any way.

The memory for the image is then allocated according to the

IMAGE_NT_HEADERS64.OptionalHeader.SizeOfImage value, and the loader_struc

auxiliary structure is formed.

struct loader_struc

{

 IMAGE_NT_HEADERS64 *pPE_header;

 LPVOID ImageBase;

 HMODULE *p_imported_modules

 QWORD number_of_imported_modules

 HMODULE (__stdcall *pLoadLibrary)(LPCSTR lpLibFileName);

 FARPROC (__stdcall *pGetProcAddress)(HMODULE hModule, LPCSTR lpProcName);

 BOOL (__stdcall *pFreeLibrary)(HMODULE hLibModule);

 QWORD unk;

};

This is followed by the standard process of loading the PE module into memory and calling the

loaded module's entry point (DllMain) with the DLL_PROCESS_ATTACH argument, and after

exiting it, calling it again with DLL_PROCESS_DETACH.

The main module operation

In the main module, the values of all signatures required for the correct file loading are equal to

zero.

· IMAGE_DOS_HEADER.e_magic

· IMAGE_NT_HEADERS64.Signature

11
11

· IMAGE_NT_HEADERS64.FileHeader.Magic

In addition, TimeDateStamp and section names also have a null value. The remaining values

are correct, thus after manually editing the necessary signatures, the file can be downloaded for

analysis as a proper PE module.

The analysis of the main module is complicated, since atypical methods of calling functions are

periodically used. The UT hash library is used for storing and processing structures. It allows one

to convert standard C structures to hash tables by adding a single member of the

ut_hash_handle type. All library functions, such as adding elements, search, delete, etc., are

implemented as macros, which leads them to be forcibly inlined by the compiler in the code of

the main (calling) function.

The mbedtls library is used to interact with the C&C server.

DllMain function

At the beginning of execution, the Global\\BFE_Notify_Event_{65a097fe-6102-

446a-9f9c-55dfc3f45853}, event, execution mode (from the configuration), and the

command line are checked, then the operating threads are started.

https://github.com/troydhanson/uthash
https://github.com/ARMmbed/mbedtls

12
12

The module has an embedded configuration with the following structure:

struct cfg_c2_block

{

 int type;

 char field_4[20];

 char addr[256];

}

struct cfg_proxy_data

{

 DWORD dw;

 char str[256];

 char proxy_server[256];

 char username[64];

 char password[32];

 char unk[128];

};

13
13

struct builtin_config

{

 int exec_mode;

 char url_C2_req[100];

 char hash_id[20];

 char string[64];

 char field_BC;

 cfg_c2_block srv_1;

 cfg_c2_block srv_2;

 cfg_c2_block srv_3;

 cfg_c2_block srv_4;

 cfg_proxy_data proxy_1;

 cfg_proxy_data proxy_1;

 cfg_proxy_data proxy_1;

 cfg_proxy_data proxy_1;

 int CA_cert_len;

 char CA_cert[cert_len];

};

The hash field contains a value that can be an identifier. This value is used when communicating

with the C&C server and can be represented as a

b2e4936936c910319fb3d210bfa55b18765db9cc string, which is the same length as the

SHA1 hashes.

 The string field contains a single character string: 1.

CA_cert is a certificate of the certificate authority in the DER format. It is used to establish a

connection to the C&C server over the TLS 1.2 protocol.

14
14

Certificate information can be found in the Addendum No. 1 to the study.

The DllMain function enables for the creation of multiple operating threads depending on a

number of conditions.

· Main thread — thread_1_main

· New server request thread — thread_2_get_new_C2_start_communication

· Encrypted module execution thread — thread_4_execute_encrypted_module

For execution, the value of the builtin_config.exec_mode parameter must be non-zero.

· If the builtin_config.exec_mode value is 1 or 2, and the process command line

contains the -k netsvcs substring, the main thread and the thread for getting the new C&C

server address are started;

· If builtin_config.exec_mode is equal to 2, a thread that decrypts and runs the module

stored in the system is started;

· If the value is 3, the main thread and the thread for getting the new C&C server address are

started.

In the examined sample, the value of the exec_mode parameter is 3.

The main thread

First, the backdoor checks the OS version then prepares a structure for initializing functions and a

structure for storing a certain configuration fields. The procedure looks artificially complicated.

15
15

3 pointers to functions are inserted to the funcs_struc structure of the funcs_1 type that

will be called in turn inside the init_global_funcs_and_allocated_cfg function.

In the set_global_funcs_by_callbacks function, each initializer function is called in turn.

The general order of structure forming is as follows:

1) Two structures are passed to each function: the first contains pointers to some functions; the

second is empty.

2) Each function transfers function pointers from one structure to another.

3) After calling the initializer function, the function pointers are moved from the local structure

to the global array of structures at a certain index.

16
16

As a result, after all the unusual transformations, a certain number of global structures that are

combined into a single array remain.

Ultimately, the function call can be represented as follows.

The use of complex transformations like copying local structures with functions and transferring

them to global structures is probably intended to complicate the analysis of a malicious sample.

The backdoor then uses the UT hash library to generate a hash table of service structures

responsible for storing the network connection context, connection parameters, etc.

Below is the fragment of the hash table generation code.

It is worth noting that the hash table contains a signature value that allows one to determine the

library used: g_p_struc_10->hh.tbl->signature = 0xA0111FE1;.

17
17

The backdoor in question is characterized by the distribution of relevant fields and data across

several structures created specifically for this purpose. This feature makes it difficult to create

meaningful names for structures during analysis.

After the preparatory steps, the backdoor proceeds to initialize the connection to the C&C

server.

Initializing the connection to the C&C server

It is noteworthy that the program code associated with the network connection contains its own

error codes, in addition to the codes from the mbedtls library.

A list of error codes found in the sample.

enum ERROR_CODES

{

 ERROR_CODE_1392 = 0x1392,

 ERROR_BAD_ARGS = 0x5208,

 ERROR_CODE_520B = 0x520B,

 ERROR_CODE_520D = 0x520D,

 ERROR_CODE_59D8 = 0x59D8,

 ERROR_CODE_59DB = 0x59DB,

 ERROR_CODE_59DC = 0x59DC,

 ERROR_INVALID_ARGUMENT = 0x59DE,

 ERROR_CODE_59DF = 0x59DF,

 ERROR_CODE_61A8 = 0x61A8,

 ERROR_BAD_ALLOCATION = 0x61A9,

 ERROR_BAD_PACKET_SIGNATURE = 0x61AA,

 ERROR_CODE_61AB = 0x61AB,

 ERROR_CODE_61AC = 0x61AC,

 ERROR_CODE_61AD = 0x61AD,

18
18

 ERROR_CODE_61AF = 0x61AF,

 ERROR_CODE_61B0 = 0x61B0,

 ERROR_CODE_61B1 = 0x61B1,

 ERROR_BUFFER_NOT_EMPTY = 0x61B2,

 ERROR_CODE_6590 = 0x6590,

 ERROR_CODE_6592 = 0x6592,

 ERROR_BAD_ALLOC = 0x6593,

};

After a series of preparatory actions, the backdoor resolves the address of the C&C server stored

in the configuration and retrieves the port. Addresses in the configuration are stored as strings:

koran.junlper[.]com:80 and koran.junlper[.]com:443. Next, the program creates a

TCP socket for the connection. After that, it creates a context for the secure connection and

performs a TLS handshake.

After establishing secure connection, the backdoor expects a packet with a command from the

C&C server. The program works with two packet formats:

1. The packet received after processing the TLS protocol is a "transport" packet.

2. The packet received after processing the transport packet is a "data" packet. It contains the

command ID and additional data.

19
19

The transport packet header is represented by the following structure.

struct transport_packet_header

{

 DWORD signature;

 WORD compressed_len;

 WORD uncompressed_len;

};

The data is placed after the header and packed by the LZ4 algorithm. The backdoor checks the

value of the signature field. It must be equal to 0x573F0A68.

After unpacking, the resulting data packet has a header in the following format.

struct data_packet_header

{

 WORD tag;

 WORD id;

 WORD unk_0;

 BYTE update_data;

 BYTE id_part;

 DWORD unk_1;

 DWORD unk_2;

 DWORD len;

};

The tag and id fields together define the backdoor action, which means they denote the

command ID.

These header structures are used in both directions of interaction.

The order of processing server commands:

1. Client verification

2. Sending the information about the infected system

3. Processing commands by IDs

There is a variable that stores the state of the dialog in the structure responsible for

communicating with the C&C server. Therefore, before directly executing commands, performing

the first two steps is required, which can be considered as a second handshake.

A verification step

To perform the verification step, the values of the tag and id fields in the primary packet

received from the C&C server must be equal to 1.

20
20

The verification process is as follows:

1. The backdoor forms a buffer from an 8-byte array that follows the packet header and the

hash_id field taken from the configuration. The result can be represented as the structure:

struct buff

{

 BYTE packet_data[8];

 BYTE hash_id[20];

}

2. The SHA1 hash of the data in the resulting buffer is calculated. The result is placed in the

packet (after the header) and sent to the server.

Sending system information

The next packet received from the C&C server must have the tag value equal to 5 and id value

equal to 3. The system data is formed as a sysinfo_packet_data structure.

struct session_info

{

 DWORD id;

 DWORD State;

 DWORD ClientBuildNumber;

 BYTE user_name[64];

 BYTE client_IPv4[20];

 BYTE WinStationName[32];

 BYTE domain_name[64];

};

struct sysinfo_block_2

{

 WORD field_0;

 WORD field_2;

 WORD field_4;

 WORD system_def_lang_id;

 WORD user_def_lang_id;

 DWORD timezone_bias;

 DWORD process_SessionID;

 BYTE user_name[128];

 BYTE domain_name[128];

 DWORD number_of_sessions;

 session_info sessions[number_of_sessions];

};

struct sysinfo_block_1

{

 DWORD unk_0; //0

21
21

 DWORD bot_id_created;

 DWORD dw_const_0; //0x101

 DWORD os_version;

 WORD dw_const_2; //0x200

 BYTE cpu_arch;

 BYTE field_13;

 DWORD main_interface_IP;

 BYTE MAC_address[20];

 BYTE bot_id[48];

 WCHAR computer_name[128];

 BYTE cfg_string[64];

 WORD w_const; //2

 WORD sessions_size;

};

struct sysinfo_packet_data

{

 DWORD id;

 sysinfo_block_1 block_1;

 sysinfo_block_2 block_2;

};

The sysinfo_packet_data.id field contains a 0x19C0001 constant.

The sysinfo_packet_data.block_1.bot_id value is extracted from the registry. The

backdoor locates it in the instance parameter of the

SOFTWARE\Clients\Mail\Hotmail\backup key, which, in turn, depending on the

privileges, can be located in the HKLM or HKCU sections.

If the value is missing, a random GUID is generated using UuidCreate, then formatted as a

XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXX string and saved. If the ID already existed, the

sysinfo_packet_data.block_1.bot_id_created parameter is assigned the 1 value. If

the ID was created, the parameter is assigned the 2 value.

The sysinfo_packet_data.block_1.cpu_arch parameter value:

· 1 — x86

· 2 — x64

The process of determining the MAC address and IP address values by the backdoor is

noteworthy. First, the program searches for the network interface through which the largest

number of packets passed, then gets its MAC address and searches for the IP address of this

interface.

22
22

The OS version is encoded with a value from 1 to 13 (0 if an error occurs, starting with 5.0 and

then ascending the version.

The sysinfo_packet_data.block_1.cfg_string field contains the string value from

the backdoor configuration, which is equal to the character 1.

Processing commands

After the verification step and sending the system information, BackDoor.Spyder.1 begins

processing the main commands. Unlike most backdoors, whose commands are quite specific

(pick up a file, create a process, etc.), in this instance, they are more of a service nature and

represent instructions for storing and structuring the received data. In fact, all these service

23
23

commands are aimed at loading new modules in PE format, storing them, and calling certain

exported functions. It is worth noting that the modules and their information are stored in

memory in the form of hash tables using UT-hash.

tag id Description

6 1 Send the number of received modules to the server.

2 Save the parameters of the received module in memory.

3 Save the body of the module in the memory.

4 Load a previously saved module. The search is performed in the hash table by the

ID obtained from the packet with the command. The module is loaded into

memory, its entry point is called, then the addresses of the 4 exported functions

are obtained, which are stored in the structure for further call. Call the exported

function No. 1.

5 Call the exported function No. 4 of one of the loaded modules, then unload it.

6 Send in response a packet consisting only of the data_packet_header header,

in which the unk_2 field is 0xFFFFFFFF.

7 Call the exported function No. 2 of one of the loaded modules.

8 Call the exported function No. 3 of one of the loaded modules.

5 2 Send information about the current connection parameters to the server.

4 - Presumably, the exported function No. 1 can return a table of pointers to

functions, and the program calls one of these functions at this command.

After processing each packet received from the server, the backdoor checks the difference

between the two values of the GetTickCount result. If the value exceeds the specified

reference value, it sends the 0x573F0A68 signature value to the server without any additional

data and transformations.

24
24

New server request thread

BackDoor.Spyder.1 can request the address of the new C&C server if the url_C2_req URL is

provided in the configuration. To request this URL, the program can use both the system proxy

and the HTTP proxy provided in the configuration. The request is made using the

InternetOpenUrlA WinHTTP API.

The response must be a Base64-encoded string between two markers: DZKS and DZJS. It

should be noted that a similar algorithm and markers were used in the PlugX family

(BackDoor.PlugX.28, BackDoor.PlugX.38).

The decoded string is decompressed using the RtlDecompressBuffer function, resulting in

the address of the new C&C server and the port to connect to.

https://vms.drweb.com/virus/?i=21507745&lng=en
https://vms.drweb.com/virus/?i=21507830&lng=en

25
25

Encrypted module execution thread

If the exec_mode configuration parameter is set to 2 and the command line contains -k

netsvcs, the backdoor creates a separate thread to execute the module stored in the file.

To do this, the backdoor searches for the C:\Windows\System32\1.update file at first. If

such a file exists, the program reads it and decrypts it.

This file contains the path to an encrypted file containing a DLL module that the backdoor reads,

decrypts, and loads.

26
26

Features of the x86 version

The version of the backdoor designed to run on 32-bit Microsoft Windows operating systems is

detected by Dr.Web as a BackDoor.Spyder.3 (83e47dbe20882513dfd1453c4fcfd99d3bcecc3d).

The main difference of this modification is the presence of debug messages. The list of debug

messages can be found in the Addendum No 2 to the study.

Messages are recorded on the log file located in the %WINDIR%\temp\deskcpl.ttf

directory. Depending on the initialization parameters, they can be output using

OutputDebufStringA or encrypted using a simple XOR operation with byte 0x62.

27
27

Messages related to communication with the C&C server and command processing are output

using the OutputDebugStringA function. It is noteworthy that for such messages, the

[Spyder] prefix is used.

28
28

Addendum No. 1 CA_cert information (certificate for

establishing a connection with the C&C server)

SHA1 Fingerprint=BF:46:40:E4:AF:56:DB:E0:D0:86:6E:16:B0:3F:C7:23:77:26:14:31

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 1 (0x1)

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: CN = SecureTrust CA, O = SecureTrust Corporation, C = US

 Validity

 Not Before: Jan 1 00:00:00 2011 GMT

 Not After : Dec 31 23:59:59 2025 GMT

 Subject: CN = SecureTrust CA, O = SecureTrust Corporation, C = US

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (4096 bit)

 Modulus:

 00:bd:c3:26:8b:e1:37:7f:f0:fa:0a:0d:83:a7:dd:

 22:31:14:83:08:d7:74:3b:31:08:84:ef:25:cf:2d:

 44:fc:2d:54:77:0b:17:e2:70:4d:be:2f:c1:fc:ed:

 d9:6b:9e:db:60:28:27:c4:1e:6d:15:3d:dd:b9:43:

 64:37:58:b4:bd:48:85:fa:d1:d6:f7:5a:33:eb:ec:

 b7:86:62:92:1f:89:d7:a4:bd:d3:1f:f3:18:9d:a4:

 15:27:16:7b:26:9f:5c:53:87:bd:40:22:d2:5e:cd:

 ab:d5:6f:1d:ac:c3:0d:f1:d9:d5:f5:6a:d3:16:76:

 58:df:f7:0b:20:0d:ed:7b:97:ae:66:0a:e6:cc:9f:

 73:50:fb:ce:16:a6:dc:45:d0:2f:70:3e:c8:c8:59:

 4d:c4:62:ec:b0:e9:01:9c:57:92:e4:78:83:4f:a6:

 ab:1b:94:45:ff:15:ed:dc:59:95:f3:71:22:9c:06:

 38:bb:e6:0f:b3:ec:af:5b:bd:1a:2f:b1:7f:ce:c8:

 4d:32:9f:8f:44:9b:ae:fc:e5:72:24:b4:3a:3b:f3:

 d0:79:30:79:a2:0e:bd:55:e9:cd:c0:4d:7e:07:fc:

 37:b5:7f:69:be:d6:e3:37:ce:9e:ff:d2:05:e4:3c:

 59:7e:f0:d4:ab:01:e4:7b:07:f6:a4:f0:e3:c3:7e:

 58:07:2d:e8:96:9c:ac:8b:e6:dc:49:6a:51:9a:b3:

 b0:62:cf:3c:b4:4a:f9:89:ae:2c:73:17:01:43:63:

 ec:e8:2b:7b:1c:3c:81:41:fa:db:93:45:3a:21:1f:

 2a:3a:8f:30:d4:52:59:91:03:03:11:b8:18:ca:39:

 4c:9a:e2:57:33:e6:bc:c5:4a:8e:76:79:50:fd:bd:

 32:78:9c:79:58:4f:b9:d3:bb:05:eb:39:43:db:3e:

 b5:2d:51:18:ed:ee:9d:31:3a:2e:6b:37:37:34:28:

 4a:89:cb:65:b4:7d:bf:be:a1:67:cb:5c:71:9c:be:

 c3:3b:f7:a7:df:37:4d:0f:c7:57:f5:5b:d2:db:54:

 2c:91:5b:3b:7f:ec:1f:45:e4:7b:a5:0d:a1:c2:1f:

29
29

 64:af:51:cd:32:3a:83:25:9c:90:ac:77:66:4d:12:

 23:f5:5b:3c:90:b5:41:1b:54:55:a4:24:66:e6:e9:

 65:46:95:ff:ef:67:f5:a6:80:f6:d5:e6:3f:2f:c2:

 7b:25:d8:b3:b4:4d:f4:b8:7c:38:cc:de:3e:4f:43:

 9a:ca:be:c1:66:95:2d:2c:16:a9:56:9b:68:5d:8c:

 78:90:84:d4:86:51:10:f1:9b:14:23:43:bb:91:1e:

 02:01:ee:11:63:c4:f2:81:7f:83:68:5e:86:bd:8a:

 88:7c:2d

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:TRUE, pathlen:0

 X509v3 Subject Key Identifier:

 E0:63:19:89:FA:AD:19:5D:E3:B3:A5:E2:85:D2:2F:87:B1:55:76:1B

 X509v3 Authority Key Identifier:

 keyid:E0:63:19:89:FA:AD:19:5D:E3:B3:A5:E2:85:D2:2F:87:B1:55:
76:1B

 X509v3 Key Usage: critical

 Digital Signature, Key Agreement, Certificate Sign, CRL Sign

 Netscape Cert Type:

 SSL Client, SSL Server, Object Signing, SSL CA, Object
Signing CA

 Signature Algorithm: sha256WithRSAEncryption

 08:33:53:e4:be:95:0a:1b:d7:6e:44:6b:2d:42:2a:45:7f:8b:

 89:fd:fb:d0:cf:5f:8f:83:77:5d:3b:2c:11:46:9f:44:3b:69:

 f2:e2:e7:fe:4e:c9:43:5c:89:5f:e2:e2:5a:5e:4c:4d:39:ed:

 ce:2d:63:d4:a1:93:ff:ff:3f:b0:77:86:e8:f1:5e:a3:4d:d3:

 ba:eb:41:0f:85:0c:04:fb:6c:42:19:bc:2b:d1:db:c6:51:e3:

 97:cd:5b:e5:d5:b4:1f:43:e7:7c:eb:86:08:16:86:0b:46:23:

 9d:f4:e9:18:b6:ce:e5:f4:96:7b:ee:5f:f5:8d:ff:dd:65:29:

 b9:12:94:f7:da:d3:c0:64:53:e6:2b:36:ec:6f:d3:26:3c:c2:

 ab:ba:10:cd:d8:39:43:8b:21:fe:68:ab:48:25:34:07:a6:cc:

 cc:b5:70:60:c4:ae:91:73:19:ff:9d:ff:82:ca:4a:9c:8e:70:

 94:96:5f:7c:b3:e8:f7:e4:3e:cc:af:41:7e:24:47:fe:ad:d5:

 a7:80:32:80:9c:7f:0c:00:3b:92:4c:ec:8e:ef:93:fb:8a:1f:

 ff:be:f0:ab:33:c7:4b:2b:5d:fc:31:e6:bf:f4:1d:c0:e3:d0:

 c5:94:a9:21:b1:8c:26:4b:c2:82:51:cf:1b:63:09:b1:ec:45:

 31:49:ba:51:42:22:7a:41:90:2f:28:0e:40:76:91:3c:33:34:

 84:66:b9:7e:0e:68:5a:37:38:01:b1:92:64:a5:a8:9c:34:84:

 6a:c6:01:d0:30:f8:d5:52:0f:6e:3e:40:06:a2:b8:4c:b1:69:

 4d:16:8f:d0:c4:72:b6:0e:09:57:6c:5e:cd:bc:ab:e3:ce:80:

 ae:a7:6c:3d:3c:01:a5:a3:4f:4d:e0:52:36:12:cc:7a:e2:5e:

 f3:d7:22:a7:6c:7c:60:d4:fd:f4:37:94:70:dd:4c:9b:00:cd:

 7d:9d:42:f7:e7:b2:25:f6:63:06:1e:4d:dc:4b:ef:5c:45:5d:

 a7:b9:b7:33:21:4e:91:40:ba:ca:ec:70:d0:a5:f7:0c:0a:ea:

 97:11:fa:47:8b:dd:24:b0:c2:98:ff:94:4f:f6:c8:0f:e9:a5:

 2d:bf:b6:7c:f4:45:f3:cb:5a:fd:a0:38:ce:ca:60:24:34:74:

30
30

 77:ea:91:bc:dc:68:90:53:5f:0a:f4:40:13:69:68:2e:31:f9:

 df:7d:07:05:53:42:8a:8b:e0:49:75:ee:04:94:9e:87:1a:25:

 9e:82:16:87:a2:69:dd:eb:44:21:4c:98:1d:72:8b:46:74:5c:

 33:24:5c:c2:ab:7b:1f:c4:d4:d5:9a:40:77:15:73:d3:53:62:

 60:da:5d:7c:2a:9e:12:25

-----BEGIN CERTIFICATE-----

MIIFgTCCA2mgAwIBAgIBATANBgkqhkiG9w0BAQsFADBIMRcwFQYDVQQDEw5TZWN1

cmVUcnVzdCBDQTEgMB4GA1UEChMXU2VjdXJlVHJ1c3QgQ29ycG9yYXRpb24xCzAJ

BgNVBAYTAlVTMB4XDTExMDEwMTAwMDAwMFoXDTI1MTIzMTIzNTk1OVowSDEXMBUG

A1UEAxMOU2VjdXJlVHJ1c3QgQ0ExIDAeBgNVBAoTF1NlY3VyZVRydXN0IENvcnBv

cmF0aW9uMQswCQYDVQQGEwJVUzCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoC

ggIBAL3DJovhN3/w+goNg6fdIjEUgwjXdDsxCITvJc8tRPwtVHcLF+JwTb4vwfzt

2Wue22AoJ8QebRU93blDZDdYtL1IhfrR1vdaM+vst4Zikh+J16S90x/zGJ2kFScW

eyafXFOHvUAi0l7Nq9VvHazDDfHZ1fVq0xZ2WN/3CyAN7XuXrmYK5syfc1D7zham

3EXQL3A+yMhZTcRi7LDpAZxXkuR4g0+mqxuURf8V7dxZlfNxIpwGOLvmD7Psr1u9

Gi+xf87ITTKfj0SbrvzlciS0Ojvz0HkweaIOvVXpzcBNfgf8N7V/ab7W4zfOnv/S

BeQ8WX7w1KsB5HsH9qTw48N+WAct6JacrIvm3ElqUZqzsGLPPLRK+YmuLHMXAUNj

7Ogrexw8gUH625NFOiEfKjqPMNRSWZEDAxG4GMo5TJriVzPmvMVKjnZ5UP29Mnic

eVhPudO7Bes5Q9s+tS1RGO3unTE6Lms3NzQoSonLZbR9v76hZ8tccZy+wzv3p983

TQ/HV/Vb0ttULJFbO3/sH0Xke6UNocIfZK9RzTI6gyWckKx3Zk0SI/VbPJC1QRtU

VaQkZubpZUaV/+9n9aaA9tXmPy/CeyXYs7RN9Lh8OMzePk9Dmsq+wWaVLSwWqVab

aF2MeJCE1IZREPGbFCNDu5EeAgHuEWPE8oF/g2hehr2KiHwtAgMBAAGjdjB0MA8G

A1UdEwQIMAYBAf8CAQAwHQYDVR0OBBYEFOBjGYn6rRld47Ol4oXSL4exVXYbMB8G

A1UdIwQYMBaAFOBjGYn6rRld47Ol4oXSL4exVXYbMA4GA1UdDwEB/wQEAwIBjjAR

BglghkgBhvhCAQEEBAMCANUwDQYJKoZIhvcNAQELBQADggIBAAgzU+S+lQob125E

ay1CKkV/i4n9+9DPX4+Dd107LBFGn0Q7afLi5/5OyUNciV/i4lpeTE057c4tY9Sh

k///P7B3hujxXqNN07rrQQ+FDAT7bEIZvCvR28ZR45fNW+XVtB9D53zrhggWhgtG

I5306Ri2zuX0lnvuX/WN/91lKbkSlPfa08BkU+YrNuxv0yY8wqu6EM3YOUOLIf5o

q0glNAemzMy1cGDErpFzGf+d/4LKSpyOcJSWX3yz6PfkPsyvQX4kR/6t1aeAMoCc

fwwAO5JM7I7vk/uKH/++8Kszx0srXfwx5r/0HcDj0MWUqSGxjCZLwoJRzxtjCbHs

RTFJulFCInpBkC8oDkB2kTwzNIRmuX4OaFo3OAGxkmSlqJw0hGrGAdAw+NVSD24+

QAaiuEyxaU0Wj9DEcrYOCVdsXs28q+POgK6nbD08AaWjT03gUjYSzHriXvPXIqds

fGDU/fQ3lHDdTJsAzX2dQvfnsiX2YwYeTdxL71xFXae5tzMhTpFAusrscNCl9wwK

6pcR+keL3SSwwpj/lE/2yA/ppS2/tnz0RfPLWv2gOM7KYCQ0dHfqkbzcaJBTXwr0

QBNpaC4x+d99BwVTQoqL4El17gSUnocaJZ6CFoeiad3rRCFMmB1yi0Z0XDMkXMKr

ex/E1NWaQHcVc9NTYmDaXXwqnhIl

-----END CERTIFICATE-----

Addendum No. 2. List of 32-bit modification debug

messages

[work]cmdline:%s

[work]dwDataLen=%d buf_temp=%d

[work]%s no exist

31
31

[work]get work err5

[aut]begin tid=%d.

[update_thread]begin tid=%d.

[update_thread]work=%s

[update_thread]get_work ret=%d

[update_thread]wait for work thread exit...

[update_thread]work thread exit ok

[update_thread]load work failed

[pt]proxy_thread begin tid=%d.

[]dwMajorVersion=%d dwMinorVersion=%d

[]rtlVer.dwMinorVersion=%d

[work]DllMain

[work] DLL

[work] VBR/SRV

[wk]RtlGetCurrentUserToken ok

[wk]ImpersonateLoggedOnUser ok

[wk]OpenURL %s Ret=%d

[wk]Err1

[wk]Err4

[wk]GetConfigStrFromURL err

[wk]DecodeStrBuffer err

[wk]DecodeLen err

[wk]RevertToSelf

[]IsProxyEnable Ret=%d

[aut]GetConfigStrFromURL PROXY_NO Ret=%d

[aut]GetConfigStrFromURL PROXY_USER Ret=%d

[aut]JmpAddClientConfig %s with address: %s.

[aut]GetRandom=%d

[aut]szWebURL Not Set

[aut]address_update_thread Exit.

[update_thread]get_work_path ret=%d

[pt]Using IE proxy setting.

[pt]IE proxy NOT setup.

[pt]SmpGetRegProxy Counts=%d

[pt]IE proxy type = %u NOT support, address: %s.

[pt]IE proxy type = %u, address: %s found.

[pt]Add proxy config %s, address=%s.

[work_thread]begin tid=%d

[wt]JmpAddClientConfig %s with address: %s.

[wt]JmpAddProxyConfig %s.

[wt]Proxy:%s

[wt]start Jumper error = %u.

[wt]Jumper start success!

[wt]JmpShutdown

[wt]JmpShutdown=%d

[wt]JmpTeardown=%d

32
32

[wt]tid=%d Exit

[Spyder] client module init error = %d.

[Spyder] register mod %d error = %u.

[spyder] alloc mem for ca cert failed.

[spyder] server address already exists in conf list.

[Spyder] alloc client error = %d.

[Spyder] ALLOC client uid = %u.

[Spyder] set ca for client id=%u error=%d

[Spyder] proxy setting exists, srv=%s

[spyder] use proxy [%s] to connect [%s] res = %u.

[Spyder] direct connect to %s error = %u.

[Spyder] connect to %s result = %u, protcol=%u.

[jmp] big packet: recv new big pkt while previous one not handled, old=%u,
new=%u.

[jmp] packet size exceed limit = %#X, id=%u.

[jmp] failed to realloc packet buffer, error = %u, pkt id=%u.

[jmp] big packet recv completed, id=%u, size=%u, ext id=%u.

[Spyder] PAUSE ext = %u Before.

[Spyder] PAUSE ext = %u After.

[Spyder] UNINIT ext = %u Before.

[Spyder] UNINIT ext = %u After.

duplicate session id for ext type id = %u.

[Spyder] can't find recv item for type id = %u.

[Spyder] ext type id = %u recved = %u, new recv = %u, but total size = %u

[Spyder] ext type id = %u recv completed, total size = %u.

[Spyder] find ext with same type id = %u while updating, free old ext.

[Spyder] alloc mem for completed ext error = %u.

[Spyder] ext recv %s, free tem buffer, type id = %u.

[Spyder] ext type = %u already loaded, unlaod now for updating.

[Spyder] failed to unload ext from memory.

[Spyder] load ext id = %u into memory error.

[Spyder] MOD LOAD AT %p, size=%u.

[Spyder] alloc mem for loaded item failed, unload ext type id = %u.

[Spyder] inint module type = %u begin.

[Spyder] inint module type = %u end.

[Spyder] alloc mem for mod_pfn error = %u.

[Spyder] unlaod ext id = %u error.

[Spyder] unload_and_free_all_exts.

[Spyder] UNLOAD ext = %u BEFORE.

[Spyder] UNLOAD ext = %u AFTER.

[Spyder] FREE ext = %u AFTER.

[Spyder] free ext cache = %u .

[Spyder] free ext mem = %u .

[Spyder] link setup Result=%d, local = %#X:%u, remote = %#X:%u, uid=%u.

[Spyder] connected callback at %02u:%02u:%02u, id = %u.

[Spyder] Link disconnected at %02u:%02u:%02u, id = %u.

[Spyder] recv data size = %u invalid, from uid=%u.

33
33

[Spyder] receive challenge = %I64X.

[Spyder] failed to get host info.

[Spyder] send host info error = %u.

[jmp] LOGIN SUCCESS, link id = %u.

[jmp] internal data process error.

[jmp] unknown state = %u.

[jmp] core process data error, close link = %u.

[Spyder] ext summary size error = %u.

[Spyder] ext recv prepare failed.

[Spyder] EXTENSION recv BEGIN, type = %u.

[Spyder] dll payload recv error.

[Spyder] ext active begin.

[Spyder] ext active result = %s.

[Spyder] ext free cmd not handled.

[Spyder] unhandled ext sub cmd = %u.

[Spyder] call ext failed = %d, sub=%u.

[spyder] unhandled subcmd=%u in tunnel cmd.

[Spyder] unhandled main cmd = %u, sub cmd = %u.

[Spyder] Can't get link id for ext data delevery.

[Spyder] SEND_DATA via link id=%u error = %d.

[Spyder] client link disconnect id = %u.

[Spyder] client send data error = %#X, id = %u.

[Spyder] enum session error = %u.

[Spyder] get Host info error.

[Spyder] save sn value error = %u.

[Spyder] gszUniqueSN=%s

[Spyder] create guid error = %d.

[jmp] Get adapter info error = %u.

[jmp] adapters info buf size=%u, count=%u.

 Alloc buf for adapter info error = %u.

get adapter info with buf error = %u.

[jmp] IP=%s not match preset mac address, desc=%s.

[jmp] master adapter FOUND! IP = [%s], desc=%s.

[jmp] master adapter has more than one ip: %s.

Addendum No. 3. Indicators of compromise

SHA1 hashes

BackDoor.Spyder

41777d592dd91e7fb2a1561aff018c452eb32c28

cf584bd93d76f6546004fedb1fcf56888ced54b6

34
34

e1fe3594da5466dd2e5a5713e885760d7e914b91

8af7f35ec09ec77b5a9005a1fff0e22464f2ab7f

699a7c59ab5b437badfaa90071d9fd9304fdcebc

ff5b2bd36ae07d994c194ed0f38ed9357a018128

d4bec278dda7c046739d5361eb51fd65f0fedfea

4c871eae022c8088f6e8d46e17002cd0c0006650

83e47dbe20882513dfd1453c4fcfd99d3bcecc3d

Domains

sidc.everywebsite[.]us

snoc.hostingupdate[.]club

wntc.livehost[.]live

hccadkml89.dnslookup[.]services

koran.junlper[.]com

nted.tg9f6zwkx[.]icu

sidcfpprx14.in.ril[.]com

sidcfpprx01.in.ril[.]com

sidcfpprx25.in.ril[.]com

sidcfpprx10.in.ril[.]com

	Table of Contents
	Introduction
	Main features
	Conclusion
	BackDoor.Spyder.1 operating routine
	Addendum No. 1 CA_cert information (certificate for establishing a connection with the C&C server)
	Addendum No. 2. List of 32-bit modification debug messages
	Addendum No. 3. Indicators of compromise

