
Study of targeted attacks on Russian

research institutes

Doctor Web Head Office

2-12A, 3rd str. Yamskogo polya

Moscow, Russia

125124

Website: www.drweb.com

Phone: +7 (495) 789-45-87

Refer to the official website for regional and international office information.

Study of targeted attacks on Russian research institutes

4/2/2021

© Doctor Web, Ltd., 2021. All rights reserved.

This document is the property of Doctor Web, Ltd. (hereinafter - Doctor Web). No part of this

document may be reproduced, published or transmitted in any form or by any means for any

purpose without proper attribution.

Doctor Web develops and distributes Dr.Web information security solutions which provide

efficient protection from malicious software and spam.

Doctor Web customers can be found among home users from all over the world and in

government enterprises, small companies and nationwide corporations.

Dr.Web antivirus solutions are well known since 1992 for continuing excellence in malware

detection and compliance with international information security standards. State certificates and

awards received by the Dr.Web solutions, as well as the globally widespread use of our products

are the best evidence of exceptional trust to the company products.

3
3

Table of Contents

4Introduction

5Who’s behind the attacks?

7Comparative code analysis of BackDoor.DNSep.1 and BackDoor.Cotx.1

15Comparative code analysis of the Skeye, Mikroceen and Logtu backdoors

23Conclusion

24Operating Routine of Discovered Malware Samples

24BackDoor.Skeye.1

33BackDoor.DNSep.1

39BackDoor.Remshell.24

41BackDoor.Farfli.130

42Trojan.Mirage.12

48BackDoor.Siggen2.3268

58Appendix 1. Indicators of compromise

4
4

Introduction

At the end of September 2020, one of the Russian research institutes contacted the Doctor Web

virus laboratory seeking assistance. The research institute’s staff drew our attention to technical

problems that could indicate the presence of malware on one of the servers in their local

network. During the investigation, Doctor Web virus analysts found that the institute had been

the victim of a targeted attack using specialized backdoors. A detailed study of the incident

revealed that the facility's network had been compromised long before the institute contacted us

and, judging by the available data, by more than one APT group.

The data obtained during the investigation suggests that the first APT group compromised the

internal network of the institute in fall 2017. The initial infection was carried out using

BackDoor.Farfli.130—a modification of the Gh0st RAT malware. Later in spring 2019 the network

was infected with Trojan.Mirage.12, and again in June 2020—with BackDoor.Siggen2.3268.

The second hacker group infiltrated the institute's network no later than April 2019. The infection

began with the installation of BackDoor.Skeye.1. During the course of the investigation, we also

found that around the same time—in May 2019—Skeye was deployed to the local network of

another Russian research institute.

Meanwhile, in June 2019, FireEye published a report on that backdoor used in a targeted attack

on the public sector of a number of Central Asian countries. Doctor Web virus analysts later

uncovered various trojans that were installed in the institute’s network between August and

September 2020 by the same APT group. The previously unknown BackDoor.DNSep.1 DNS

backdoor, as well as the all-too-familiar BackDoor.PlugX were among the malware.

To top that off, in December 2017, a BackDoor.RemShell.24 was also installed on the servers of

the research institute that contacted us. Samples of this malware family were previously

described by Positive Technologies specialists in the study "Operation Taskmasters". At the

moment we do not have enough data to decisively determine which of the two APT groups

used this backdoor.

https://www.fireeye.com/blog/threat-research/2019/06/government-in-central-asia-targeted-with-hawkball-backdoor.html
https://vms.drweb.com/search/?q=BackDoor.PlugX&lng=en
https://www.ptsecurity.com/ww-en/analytics/operation-taskmasters-2019/

5
5

Who’s behind the attacks?

What we know about the first APT group is not enough to identify the attackers as one of the

previously described hacker groups. At the same time, analysis of the malware and infrastructure

used revealed that this group has been active since at least 2015.

We believe the second APT group that attacked the research institute is TA428, previously

described by Proofpoint researchers in the "Operation Lag Time IT" study. The following facts

support this conclusion:

1. There are explicit intersections in the code of the BackDoor.DNSep and BackDoor.Cotx

backdoors.

2. Both BackDoor.Skeye.1 and Trojan.Loader.661 were used in the same attack. The latter is a

known tool of TA428.

3. The backdoors we analyzed during the investigation of these attacks have intersections in the

C&C servers' addresses and the network infrastructure with the backdoors used by TA428.

At this point, we’ll take a closer look at the uncovered connections. The graph shows part of the

infrastructure involved in the attack with intersections between the Skeye backdoor and another

well-known APT backdoor—PoisonIvy:

https://www.proofpoint.com/us/threat-insight/post/chinese-apt-operation-lagtime-it-targets-government-information-technology

6
6

This graph shows the infrastructure intersections between the Skeye and Cotx backdoors:

7
7

A detailed analysis of the DNSep backdoor and a code comparison with the Cotx backdoor code

revealed similarities in the general logic of processing commands from the C&C server and in

specific implementations of individual commands.

Another interesting finding was the Logtu backdoor. We previously described one of its samples

during our investigation of the incident in Kyrgyzstan. Its C&C server turned out to be atob[.]

kommesantor[.]com, which was also the server for the Skeye backdoor. In this regard, we also

conducted a comparative analysis of BackDoor.Skeye.1 with samples of BackDoor.Logtu.1 and

BackDoor.Mikroceen.11.

Comparative code analysis of BackDoor.DNSep.1 and

BackDoor.Cotx.1

Even though Cotx and DNSep have radically different communication channels with the C&C

server, we managed to find interesting matches in the code of both backdoors.

The function responsible for processing commands from the C&C server takes the structure as

an argument:

struct st_arg

{

 _BYTE cmd;

 st_string arg;

};

At the same time, if the required function accepts several arguments, they are all written in the

arg field with the separator |.

The BackDoor.Cotx has more commands than the BackDoor.DNSep.1 does and includes all

the commands as the latter.

The table below shows an almost complete code match for some of the backdoor functions. It is

worth noting that Cotx uses Unicode encoding, while DNSep uses ANSI encoding.

https://vms.drweb.ru/virus/?i=21517232&lng=en
https://vms.drweb.ru/virus/?i=21512308&lng=en

8
8

A handler for a command to send a directory listing or disk information

BackDoor.DNSep.1

BackDoor.Cotx.1

9
9

Function for getting information about disks

BackDoor.DNSep.1

10
10

BackDoor.Cotx.1

11
11

Function for listing files in a folder

BackDoor.DNSep.1

12
12

BackDoor.Cotx.1

13
13

Function for collecting information about files in a folder

BackDoor.DNSep.1

14
14

BackDoor.Cotx.1

The data obtained during the analysis suggests that the author of the DNSep backdoor had

access to the Cotx source codes. Since these resources are not publicly available, we assume the

author or group of authors of DNSep is related to TA428. The DNSep sample supports this

version, as it was found in the same compromised network along with other known TA428

backdoors.

15
15

Comparative code analysis of the Skeye, Mikroceen and

Logtu backdoors

Over the course of the Skeye backdoor study, we found that the Logtu backdoor uses the same

C&C server address. For comparative analysis, we used the previously described

BackDoor.Logtu.1 and the BackDoor.Mikroceen.11 samples.

Logging functions

Logging in all cases is obfuscated.

· BackDoor.Mikroceen.11—messages in the %d - %d-%d %d:%d:%d <msg>\r\n format is

written to the %TEMP%\WZ9Jan10.TMP file, where <msg> is a random text string. In the

sample 2f80f51188dc9aea697868864d88925d64c26abc, the messages are written to

the 7B296FB0.CAB file;

· BackDoor.Logtu.1—messages in the [%d-%02d-%02d %02d:%02d:%02d] <rec_id>

<error_code>\n<opt_message>\n\n format before writing to the %TEMP%

\rar<rnd>.tmp file are encrypted with the XOR operation with the key 0x31;

· BackDoor.Skeye.1—messages in the format %4d/%02d/%02d %02d:%02d:%

02d\t<rec_id>\t<error_code>\n are written to the %TEMP%\wcrypt32.dll file.

The general logic of the sequence of writing messages to the log is also similar for all three

samples:

· The start of the execution is fixed.

· A direct connection to the C&C server is recorded in the log in Logtu and Mikroceen.

· In each case, the proxy used to connect to the server is specified.

· A separate entry is recorded in the log in case of an error when obtaining a proxy from a

particular source.

It should be noted that such detailed and obfuscated logging is extremely rare. Obfuscation

implements the logging of some message codes and, in some cases, additional data. In

addition, in this case, the general principle of the sequence of recording events is traced as

follows:

· The start of the execution is fixed

· Direct connection attempt

· Proxy addresses obtainment

· A record of the connection via a particular server

16
16

Search for a proxy server

The connection sequence to the C&C server also looks similar in all three samples. Initially, each

backdoor attempts to connect to the server directly, and in case of failure, it can use proxy

servers whose addresses are originating from three sources in addition to the built-in one.

BackDoor.Mikroceen.11 can obtain proxy servers addresses:

· From the %WINDIR%\debug\netlogon.cfg file;

· From its own log file; and

· By searching for connections to remote hosts via ports 80, 8080, 3128, 9080 in the TCP table.

17
17

Search for a proxy in the own log file:

18
18

Search in active connections:

BackDoor.Logtu.1 can obtain proxy servers addresses:

· From the registry HKCU\Software\Microsoft\Windows\CurrentVersion\Internet

Settings\ProxyServer;

· From the HKU section of the registry by the SID of the active user; and

· By the WinHttpGetProxyForUrl WinHTTP API requesting google.com.

19
19

BackDoor.Skeye.1 can obtain proxy servers addresses:

· From the HCKU section of the registry
Software\Microsoft\Windows\CurrentVersion\Internet

Settings\ProxyServer;

· From the HKU section of the registry by the SID of the active user; and

· By searching for connections to remote hosts via ports 80, 8080, 3128, 9080 in the TCP table.

20
20

Intersections in the network infrastructure

Some samples shared the same network infrastructure. A fragment of the graph clearly shows

the relationship between the families.

IDs

The Logtu and Mikroceen samples contain strings that are used as builds IDs or version IDs.

Some of these strings share the same format.

BackDoor.Mikroceen.11 BackDoor.Logtu.1

SHA1 Id SHA1 id

ce21f798119dbcb7a63f8cdf0

70545abb09f25ba

intl0113 029735cb604ddcb9ce85de92

a6096d366bd38a24

intpz0220

21
21

0eb2136c5ff7a92706bc9207d

a32dd85691eeed5

hisa5.si4 7b652e352a6d2a511f226e4d

0cc22f093e052ad8

retail2007

2f80f51188dc9aea697868864

d88925d64c26abc

josa5w5n 1c5e5fd53fc2ee778342a5cae

3ac2eb0ac345ed7

retail

2e50c075343ab20228a8c0c0

94722bbff71c4a2a

enc0225 00ddcc200d1031b863902653

2c0087bfcc4520c9

716demo

 3bd16f11b5b3965a124a6fc3

286297e5cfe77715

520299 b599797746ae8ccf7907cf88d

e232faa30ec95e6

gas-zhi

5eecdf63e85833e712a1ff88df

1341bbf32f4ab8

Strive 2d672d7818a56029b337e879

2935195d53576a9d

j j lk

bd308f4d1a32096a3b90cfdae

45bbc5c13e5e801

R0916

b1be4b2f874c8309f553acce9

0287c8c6bb2b6b1

frsl.1ply

21ffd24b8074d7cffdf4cc339d

1fa8fe892eba27

Wdv

8fbec09e646311a285aee06b3

dd45ccf58928703

intz726

19921cc47b3de003186e65fd1

2b82235030f060d

122764

0f70251abc8c64cbc7b24995c

3d32927514d0a4b

V20180224

149947544ca4f7baa5bc3d00

b080d0e943d8036b

SOE

e7f5a33b33e023a82ac9eee6e

d40e4a38ce95277

int815

b4790eec7daa9f931bed43a5

3f66168b477599a7

UOE

ab660a3ac46d563c756463bd

1b64cc45f347a1f7

B.Z11NOV20D

d0181759a175fbcc60975983b

351f88970f484f9

299520

22
22

7a63fc9db2bc1e9b1ef793723

d5877e6b4c566b8

WinVideo

13779006d0dafbe4b27bd282

230df299eef2b8dc

SSLSSL

f53c77695a162c78c68f693f57

f65752d17f6030

int007server

924341cab6106ef993b506193

e6786e459936069

intl1211

8ebf78c84cd7f66ca8708467a

28d83658bcf6710

intl821

f2856d7d138430e164f83662e

251ee311950d83c

intl821

In addition, a significant number of samples showed that this ID is equal to the value of TEST or

test.

BackDoor.Logtu.1 example (9ea2488f07bf3edda23d9b7759c2d0c3c8501f92):

BackDoor.Mirkoceen.11 example (81bb895a833594013bc74b429fb1f24f9ec9df26):

Thus, the comparative code analysis revealed similarities in the considered families in:

· The logic of event logging and its obfuscation;

· The logic of connection to the C&C server and in the proxy address search algorithms; and

· The network infrastructure.

23
23

Conclusion

Throughout the investigation into the attacks on the Russian research institutes, our virus

analysts found and described several families of specialized backdoors, including previously

unknown samples. It is worth noting that the unauthorized presence of the first APT group has

gone unnoticed since 2017.

One of the most interesting findings is the code and network infrastructure intersections of the

analyzed samples. We assume that the discovered connections indicate that the backdoors in

question belong to the same APT groups.

Doctor Web specialists suggest regular monitoring of important network resources and pay

timely attention to failures that may be the results of malware activity in the network. APT poses

a significant threat not only by compromising data, but also by the prolonged presence of

intruders in corporate networks. This allows them to monitor the organization’s work for years

and gain access to sensitive information at will. If malicious activity within a corporate network is

suspected, the prudent course of action is to contact the Doctor Web virus laboratory for

qualified help. Prompt countermeasures will significantly reduce any actual damage and prevent

further detrimental consequences of targeted attacks.

24
24

Operating Routine of Discovered Malware Samples

BackDoor.Skeye.1

A backdoor written in C and designed to operate in the 64-bit versions of Microsoft Windows

operating systems. It is used for targeted attacks on information systems, collecting information

about the infected devices and remotely controlling them by launching cmd.exe and redirecting

the I/O to the attacker's C&C server. The malicious module’s original name is sk.exe. The

backdoor’s code has similarities with the code of Mikroceen and Logtu malware.

Operating routine

It has one exported function DllEntry of the following structure:

25
25

When running the sample as an EXE file, only the malmain function is run.

The backdoor writes the event log to the %TEMP%\\wcrypt32.dll file containing the date

and time of the message; but instead of the readable message, the program logs its code. The

table below shows the message codes decryption.

code arg msg

4 0 Backdoor launch

5 Error code Error upon process launch

10 botid A new botid is received from the server

26
26

16 0 Proxy settings for the current user are received

17 0 Proxy settings for the current user are not received

18 0 Proxy settings for the active user are received

19 0 Proxy settings for the active user are not received

20 Error code Error while receiving SID of the active user

32 Attempt number Attempting to check the availability of the server

65 status code A code other than 200 is received while the command is

requested.

66 Attempt number Failed to request a command

67 status code Attempting to check the availability of the server

68 0 The proxy flag is not set in the system settings

70 Error code Failed to connect to the C&C server

71 Error code Request creation error

72 Error code Request transmission error

100 + cmdid 0 Execution command received

153 Error code Failed to obtain the status code for the sent request

256 Attempt number Attempting to request an execution command

27
27

The backdoor initializes the list of commands it can execute upon operation.

This is followed by the initial check for any debugging processes—the backdoor checks the

BeingDebugged flag in the PEB (Process Environment Block). If there is a debugging process,

the backdoor closes.

Next, it creates a test0 or test0_cu mutex in case it is not run from NT

AUTHORITY/SYSTEM. If the specified mutex already exists, the backdoor terminates.

It then reads the bot ID from the file %TEMP%\\test0.dat. An 8-byte encryption key is

initialized based on the bot ID.

28
28

Next, BackDoor.Skeye.1 begins operation with the C&C server. Before sending requests, it again

checks whether the sample debugging process is present. This time, using the

NtQueryInformationProcess function it checks ProcessDebugPort,

ProcessDebugObjectHandle and ProcessDebugFlags. If the backdoor spots the

debugging process, it closes.

The requests use the User-Agent string:

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0;
SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729;

Media Center PC 6.0; InfoPath.2).

When connection to the C&C server, the backdoor first sends a GET request to check the

availability of the server; the sample contains two sets (server-port) of the C&C addresses.

hxxps://atob.kommesantor.com/?t=%d&&s=%d&&p=%s&&k=%d, where t parameter is

the bot ID, s is session number, p is dut6@bV0 string, and k is the result of the

GetTickCount() function.

If the response is code 200, it means the server connection has been successfully established,

and the backdoor requests an execution command. If the response is code 403, the program

tries to repeat the request, while it enters www.mail[.]ru in the Host HTTP header instead of

entering the C&C address. If the code 200 still cannot be obtained, the backdoor then checks

the second C&C server. In case of repeated failure, it waits for a few seconds and then makes

another attempt.

A GET request with the address hxxps://atob.kommesantor.com/?e=%d&&t=%d&&k=%

d is used to request the command, where e is null, t is the bot ID, and k is the result of the

GetTickCount() function.

29
29

If the response is the code 200, the cookie of that response contains the ID of the command to

be executed, and the response data is encrypted with an XOR operation with an 8-byte key

based on the bot ID.

A POST request with the address hxxps://atob.kommesantor.com/?e=%d&&t=%d&&k=%

d is used to send back the results, where e is the command ID, t is the bot ID, and k is the result

of the GetTickCount() function; the result of the request is transmitted as data encrypted by

an XOR operation with an 8-byte key based on the bot ID.

Command list

Command id Resulting action

1 To set a new botid

16 To idle

17 To send information about the infected system

18 To launch a process

19 To launch a process and send its output

20 To run the command shell with I/O redirecting to pipes

21 To close the command shell

22 To send the command shell output

23 To launch its file with the stop parameter

24 To terminate the backdoor operation

48 To run the file manager

64 To send the information about disks

65 To send the directory listing

66 To delete a file

67 To move a file

80 To send a process list

81 To terminate a process

85 To send a service list

30
30

86 To launch a process

During the investigation of the related targeted attack, the following servers were found:

atob[.]kommesantor[.]com

term[.]internnetionfax[.]com

rps[.]news-click[.]net

All three domains are resolved to 103.97.124[.]193.

Other modifications of the Skeye backdoor

Another uncovered backdoor sample (0b33a10c0b286c6ffa1d45b261d8a338) has been added

to Dr.Web database as BackDoor.Skeye.2.

The key differences of this modification are:

· Exported functions are absent.

· The sample runs as a service, installing or deleting itself, depending on the arguments it is

running with (install, uninstall, without arguments).

31
31

The malmain function is also run from ServiceMain;

· The bot ID is read from the file %TEMP%\Date, but the encryption key is generated in the

same manner.

· The configuration (mutex name, server address, port, and proxy) is encrypted with the XOR

operation with the key 0xB7. www2.morgoclass[.]com is the C&C address. The port is

443.

32
32

· The protocol of communication with the C&C server is binary. The connection is made via a

TCP socket. After connecting to the server, the backdoor sends an 8-byte packet: the first 4

bytes are the bot ID, the second 4 bytes are zeros. Receiving a response from the server is

performed in 2 stages: first, a packet with the length of the data (header) is received, then the

data itself is received and decrypted. The header structure is the following:

struct packet_header

{

 BYTE marker;

 DWORD cmd_id;

 DWORD size;

}

With that, the marker field must be equal to 0xFF. The data is sent to the server by a single

call to send with the same header.

· This sample does not include all the commands described in the first sample

(a259db436aa8883cc99af1d59f05f4b1d97c178b). Commands 80, 81, 85, and 86 are absent

· There are differences in the event log message codes. Codes 10, 65-68, and 70-72 are absent.

The event log message codes are shown in the table.

The message

code

Code Description

0 argc Written at the beginning of main

2 0 The backdoor is launched with the install command

(installing the service)

3 0 The backdoor is launched with the uninstall command

(deleting the service)

9 0 An unhandled exception occurred, the program will restart

21 0 Successful connection to the proxy server

33
33

The message

code

Code Description

22 0 Failed to connect via proxy (no addresses from the registry or

SID of the active user were received)

23 Error code Error at the proxy server connection

24 Error code Failed to connect to the C&C server without proxy

25 Error code Failed to send a packet to the C&C server

26 Error code No answer from the C&C server

48 command

ID

A received command. It is written to the log 2 times

257 0 Failed to connect to the C&C server

258 0 Failed to send an initial packet (bot ID)

cmd_id+10000 0 Command ID + 10000. It is recorded immediately after

receiving and decrypting the command

It is worth noting that the two samples use different sets of codes to log the connection to the

C&C server. In the first case, these are the codes 70-72, while the connection to the server is

made via HTTP. In the second case, these are the codes 24-26, and the connection is made via a

socket.

BackDoor.DNSep.1

A backdoor written in C and C++ and designed to run on 32- and 64-bit Microsoft Windows

operating systems. Its main purpose is to provide a communication channel with the C&C server

through DNS requests and facilitate unauthorized control over the infected computer. It consists

of a malicious loader (a .DLL library), and the main module operating in RAM. Its code has

multiple overlaps with the Cotx backdoor.

34
34

Operating routine

The malware is a DNS backdoor. C&C server communication occurs by reading the TXT records

of subdomains formed in a certain way.

Loader module

The original name in the export table is Stager.dll. The library has a number of exported

functions.

With that, most of the functions do not perform any actions. The only working function is

InitLoad, where the backdoor is launched. The same function is called from DllMain.

The backdoor unpacks the payload from its resources. It is located in the DAT resource

compressed through RtlCompressBuffer. In the unpacked main module, the loader searches

for the CQKUZXadCXS string, which is a plug for the configuration. After the string is found, the

loader replaces it with the current configuration. In the analyzed sample, this string is

AB1d3d3MS5kb3RvbWF0ZXIuY2x1Yjsw.

Next, the %WINDIR%\\System32\\dllhost.exe process is launched, where the main

module is then injected. If the third character in the configuration is 0, both the executable file of

the process in the context of which the loader operates and the file of the loader itself are

deleted.

35
35

The main module operation

The main module is written in C++, with extensive use of the STL library.

At the beginning, the backdoor verifies the embedded configuration that was earlier replaced by

the loader. If the first two characters do not match AB, it considers the configuration to be

absent, so it stops running. Otherwise, it decodes the configuration from Base64, starting from

the 4th character: www1.dotomater.club;0.

The configuration format is simple and represents a domain of the C&C server and the IP

address of the DNS server, which are separated by a semicolon. If the DNS server address is not

specified or specified as null, the backdoor uses the DNS servers used by the infected computer.

36
36

Next, the backdoor creates several threads. The first is used to send heartbeat packets.

In response, the C&C server sends the heartbeat%d string where %d is the same number from

the packet sent by the bot.

The second thread is used to parse the packets queue and send them to the C&C server.

After that, it transmits the information about the infected system:

sprintf(Str, "%s;%s;%s;%d;%s", szCompName, szUserName, szOSVer,

isx64, szCurDateTime);.

37
37

Next, the backdoor enters the cycle of receiving and processing commands from the C&C server.

Command code Command description

1 Set bot ID

2 Run the command shell and redirect the I/O to the pipes

3 Execute the command in the previously launched shell (command No.2)

4 Get information about the disk or directory listing

6 Send file to the C&C server

7 Copy a file

8 Delete a file

9 Get information about the file size

10 Save file to the specified path

11 Change the interval of C&C server communication

13 Self-deletion

C&C server communication protocol

From the data sent to the C&C server the following structure is initially formed:

#pragma pack(push, 1)

struct st_packet

{

 _BYTE magic; // 0x65

 _WORD botid;

 _DWORD pktid;

 _BYTE data[];

};

#pragma pack(pop)

· botid initially has the 0 value, but it changes upon the C&C server command, containing

opcode == 1, which is sent as a response to the information about the infected system;

· pktid has the initial value 0, but it changes upon receiving each packet from the C&C server;

· data contains the packet data, including command ID.

38
38

The received packet is encrypted with the following function:

The dadadadadadadada string is sent into this function as a key.

The received encrypted data is coded with Base64. From the encrypted data the subdomain

name for the domain, listed in the configuration, is formed. With that, if the length of the

encoded data exceeds 62 symbols, the dot is added after each 62nd symbol.

Next, the DNS request to receive TXT records of the formed domain is made.

The response from the C&C server is decrypted the same way. First, it is decoded from Base64,

followed by decryption with the dadadadadadadada key. The resulting data is:

#pragma pack(push, 1)

struct st_recv_packet

{

 _BYTE magic; // 0x65

 _DWORD pktid;

 _BYTE opcode;

 _BYTE data[];

};

#pragma pack(pop)

39
39

BackDoor.Remshell.24

A backdoor written in C and designed to operate in the 32-bit versions of the Microsoft

Windows operating systems. It allows attackers to remotely control infected computers by

implementing remote shell functions—launching cmd.exe and redirecting the I/O to the

attacker's C&C server. The malicious module’s original name is client_dll.dll.

Operating routine

The library has one exported function that implements the main functionality of the backdoor:

ServiceMain.

At the beginning of the operation, the backdoor creates a mutex to exclude the simultaneous

launch of its copy. It then decrypts the strings with an XOR operation with the byte 0x0F. List of

decrypted strings:

Mozilla/4.0 (compatible; MSIE 10.0; Windows NT 6.2;+SV1;

ns02.ns02.us/<redacted>/0xD.html

/webdav/0.htm

/webdav/%s.htm

%02d%02d

-download

Download OK!

Download failed...

-pslist

-pskill

-upload

Upload OK!

Upload failed...

Process is Killed!

Process killed failed.

-exit

cmd.exe /c

The URL ns02[.]ns02[.]us/<redacted>/0xD.html is hardcoded in the body of the

backdoor that locates both primary C&C servers.

After decrypting the strings, BackDoor.Remshell.24 uses the %02d%02d format to store the

current minutes and seconds. These values are then used in requests to the C&C server.

Next, a separate thread is started in which, in an infinite loop, the program attempts to obtain or

update the address of the second-level C&C server. When the address of the secondary C&C

server is received, the backdoor starts a thread in which it sends heartbeat requests to this

server.

40
40

The backdoor then periodically requests commands from the C&C server and executes them.

Obtaining the address of the secondary C&C server

To get an address, a GET request is sent to the URL specified in the configuration. In response,

the server sends the string -set <arg> or -SET <arg>, where <arg> is either a number or

an IP address. The resulting number is interpreted as the interval for accessing the URL specified

in the configuration. If an IP address is received, the backdoor adopts it as a secondary C&C

server.

It is worth noting that the thread does not stop working when it receives the valid address of the

C&C server. It continues to work, which allows one to change the C&C server addresses without

restarting the backdoor.

Protocol for communicating with the secondary C&C server

At the beginning of the data sent by the PUT request, the backdoor appends a header consisting

of 5 bytes, which is a string formed according to the format %02d%02d. The minute and second

values representing when the request was formed are substituted in this string.

With that, the request and response data are encrypted. The value of each sent byte of the

request data is reduced by 0x7F, and each received byte is increased by 0x7F.

As heartbeat requests, a PUT request is sent to <cnc_addr>/webdav/0.htm with data

containing the name of the infected computer and the values of the minute and second when

the backdoor was launched.

To request commands from the C&C server, the backdoor sends a GET request to

<cnc_addr>/webdav/O.html. It then decrypts the server’s response and parses it for

commands.

Commands list

Command Description

-download To download a specified file

-exit To terminate the backdoor operation

-pskill To terminate a specified process

-pslist To form a list of processes

-upload To send a specified file to the server

others Other commands are launched via cmd.exe /c

41
41

Responses to commands are sent by PUT requests to <cnc_addr>/webdav/<minsec>.htm,

where <minsec> is the values of the minute and second when the backdoor was launched.

BackDoor.Farfli.130

A malicious .DLL library written in C++ and supports the 32- and 64-bit Microsoft Windows

operating systems. It is a backdoor that allows attackers to remotely control infected computers

via the remote shell―by running cmd.exe and redirecting input-output to their C&C server.

Operating routine

Its original name from the export table is state.dll. It has the Cja and ServiceMain exported

functions.

The C&C server address is eye[.]darknightcloud[.]com:443.

This malware is based on the publicly available Gh0st backdoor source code. Compared to the

original program, BackDoor.Farfli.130 has noticeably fewer capabilities, but also has several

specific features. In this regard, this description will only cover the essential differences from the

classic Gh0st RAT.

The C&C server address is encoded with Base64 and encrypted with a simple algorithm:

Other encrypted strings are decrypted by subtracting 1 from each byte of the string.

The infected computer ID is stored in the %APPDATA%\wins.tmp file instead of the system

registry.

The traffic between the backdoor and C&C server is encrypted using the RC4 algorithm with the

following key:

b25lIGluIHRvIE5ldyBZb3JrIHRoYXQgbW9ybmluZyBmb3IgdGhpcyBmZW5jaW5nIG1lZ
XQgd2l0aCBNY0J1cm5leSBTY2hvb2wuIE9ubHksIHdlIGRpZG4ndCBoYXZlIHRoZSBtZW
V0LiBJIGxlZnQgYWxsIHRoZSBmb2lscyBhbmQgZXF1aXBtZW50IGFuZCBzdHVmZiBvbiB

0aGUgZ29kZGFtIHN1YndheS4gSXQgd2Fzbid0IGFsbCBteSB.

42
42

The BackDoor.Farfli.130 functionality is limited to the following:

· Obtaining information about storage discs

· Receiving the process list

· Launching the command shell and redirecting input-output to the C&C server

· Shutting down the computer

· Setting the ID of the infected computer

Trojan.Mirage.12

Trojan.Mirage.12 is a multi-component backdoor trojan written in C++ with the use of the

Active Template Library (ATL) and designed for Windows 32- and 64-bit operating systems. It is

used to facilitate unauthorized control over infected computers and enabling access to

information stored on them. The trojan is a COM server that operates in RAM within the system

process.

Operating routine

The trojan only operates if it is loaded into either the explorer.exe or regsvr32.exe

process. This is due to the specifics of the sample’s operation. The trojan is registered in the

system via regsvr32.exe, and its execution takes place in the context of explorer.exe.

When running through regsvr32 (with the key /i or without keys), the DllRegisterServer

function exported by the trojan is called, which registers its COM interface in the system:

[<HKLM>\Software\Classes\Server.ServerMain.1] '' = 'ServerMain Class'

[<HKLM>\Software\Classes\Server.ServerMain.1\CLSID] '' = '{D8956119-6E66-
43BD-AAA5-231F94859EE6}'

[<HKLM>\Software\Classes\Server.ServerMain] '' = 'ServerMain Class'

43
43

[<HKLM>\Software\Classes\Server.ServerMain\CLSID] '' = '{D8956119-6E66-
43BD-AAA5-231F94859EE6}'

[<HKLM>\Software\Classes\Server.ServerMain\CurVer] '' =
'Server.ServerMain.1'

[<HKLM>\Software\Classes\CLSID\{D8956119-6E66-43BD-AAA5-231F94859EE6}] ''
= 'ServerMain Class'

[<HKLM>\Software\Classes\CLSID\{D8956119-6E66-43BD-AAA5-231F94859EE6}
\ProgID] '' = 'Server.ServerMain.1'

[<HKLM>\Software\Classes\CLSID\{D8956119-6E66-43BD-AAA5-231F94859EE6}
\VersionIndependentProgID] '' = 'Server.ServerMain'

[<HKLM>\Software\Classes\CLSID\{D8956119-6E66-43BD-AAA5-231F94859EE6}
\InprocServer32] '' = '<path>'

[<HKLM>\Software\Classes\CLSID\{D8956119-6E66-43BD-AAA5-231F94859EE6}
\InprocServer32] 'ThreadingModel' = 'Apartment'

[<HKLM>\Software\Classes\CLSID\{D8956119-6E66-43BD-AAA5-231F94859EE6}
\TypeLib] '' = '{1CAE5CEB-54C5-49E3-B195-4A76DD1A7C21}'

[<HKLM>\Software\Classes\TypeLib\{1CAE5CEB-54C5-49E3-B195-4A76DD1A7C21}
\1.0] '' = 'Server 1.0 Type Library'

[<HKLM>\Software\Classes\TypeLib\{1CAE5CEB-54C5-49E3-B195-4A76DD1A7C21}
\1.0\FLAGS] '' = '0'

[<HKLM>\Software\Classes\TypeLib\{1CAE5CEB-54C5-49E3-B195-4A76DD1A7C21}
\1.0\0\win32] '' = '<path>'

[<HKLM>\Software\Classes\TypeLib\{1CAE5CEB-54C5-49E3-B195-4A76DD1A7C21}
\1.0\HELPDIR] '' = '<homedir>'

[<HKLM>\Software\Classes\Interface\{CFDA1C1C-DB4B-431C-88A1-2C799A80A4BB}]
'' = 'IServerMain'

[<HKLM>\Software\Classes\Interface\{CFDA1C1C-DB4B-431C-88A1-2C799A80A4BB}
\ProxyStubClsid] '' = '{00020424-0000-0000-C000-000000000046}'

[<HKLM>\Software\Classes\Interface\{CFDA1C1C-DB4B-431C-88A1-2C799A80A4BB}
\ProxyStubClsid32] '' = '{00020424-0000-0000-C000-000000000046}'

[<HKLM>\Software\Classes\Interface\{CFDA1C1C-DB4B-431C-88A1-2C799A80A4BB}
\TypeLib] '' = '{1CAE5CEB-54C5-49E3-B195-4A76DD1A7C21}'

[<HKLM>\Software\Classes\Interface\{CFDA1C1C-DB4B-431C-88A1-2C799A80A4BB}
\TypeLib] 'Version' = '1.0'

where <path> is the path to trojan’s file and <homedir> is its home directory.

The trojan enables its autorun also via regsvr32:
[<HKLM>\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ShellIconO
verlayIdentifiers\ServerShellIcon] '' = '{D8956119-6E66-43BD-AAA5-

231F94859EE6}'.

Thus, the process explorer.exe will load the trojan on the next restart.

Main functionality

The trojan begins performing the primary functions either by calling the exported function

DllUnregisterServerA, or by loading the process explorer.exe. The difference is that when

44
44

loading by the process explorer.exe, the trojan creates a FEca72d-abc-efef mutex to prevent

another copy from running simultaneously.

Next, it reads its configuration from the [HKCU\\Software\\Microsoft\\Keyboard\

\Set] 'HPConf’ registry key. If the specified key does not exist or the configuration stored in

the registry does not match the hardcoded configuration, it uses the hardcoded configuration

and writes it to the registry.

The configuration in the registry and in the trojan’s body is stored in encrypted form: the RC4

algorithm is used for encryption. The encryption key is hardcoded in the trojan body:

13 36 CF 83 2E CC 79 DF 2E AB 79 64.

Decryption function:

The decrypted configuration has the following structure:

struct st_config

{

 _DWORD compname_sum;

 wchar_t compname[16];

 wchar_t cnc_addr1[64];

 wchar_t cnc_addr2[64];

 wchar_t cnc_addr3[64];

 _WORD cnc_port1;

 _WORD cnc_port2;

 _DWORD interval;

 wchar_t sleep_time[64];

 wchar_t fallback_url[128];

};

45
45

In the hardcoded configuration, the fields compname_sum and compname have null values. As

the trojan decrypts it, it assigns values to these fields, then encrypts the already updated

configuration and writes it to the registry. compname_sum is calculated based on the computer

name:

Next, the trojan loads the available plug-ins. To do so, it checks whether the %APPDATA%\

\Microsoft\\Media Player folder is present. If it exists, the trojan searches for libraries

with two exported functions—GetValue and PluginEntryPoint. For each located library,

PluginEntryPoint, and then GetValue are called sequentially. The second function returns

the handle of the thread that the trojan is waiting for to complete. After the thread is terminated,

the library file is unloaded from the process and deleted.

The sleep_time configuration parameter can contain two dates (year, month, day, hour, and

minute) that define the time period when the trojan does not communicate with the C&C server.

If the current date and time do not fall within this interval or this parameter is not set, the trojan

communicates with the C&C server.

46
46

Communication with the C&C server

The trojan configuration can contain up to two C&C server’s addresses. Each server has a

specified domain and port. The configuration can also specify the URL to which the trojan sends

requests to get the control domain address—fallback_url.

All requests to the C&C server contain the bot ID:

The trojan can send two types of requests:

1. A POST request with URI /result?hl=en&meta=<botid>, where botid is the bot ID.

The request data is encrypted using the same algorithm as the configuration.

2. A GET request with URI /search?hl=en&q=<data>&meta=<botid>, where botid is the

bot ID, and data is the request data encrypted in the same way as the configuration, and

then encoded in Base64 and urlencode.

A POST request is only used to send a file from an infected computer to the C&C server if the

size of the data being sent exceeds 528 bytes.

The requests use the User-Agent string: Mozilla/4.0 (compatible; MSIE 6.0;

Win32).

To check the C&C server’s operability, the trojan sends the st_pkt_hello packet:

struct st_pkt_hello

{

 _DWORD rnd;

 _DWORD cmdid; // 0x10001000

 _BYTE gap[36]; // 0x00

};

where rnd is a random number. If the server responds to this request, the trojan uses this server

for further work. If none of the servers specified in the configuration work, the trojan sends a

Get request (just like that, not GET) to the specified URL. In response, it expects to obtain the

C&C server’s address, encrypted according to the same algorithm as the trojan configuration.

The address obtained in this way is then checked for operability in the same way—using the

st_pkt_hello packet.

47
47

When the trojan finds the C&C server, it starts periodically requesting commands. The packet for

the command request is the following:

struct st_pkt_req_cmd

{

 _DWORD rnd;

 _DWORD cmdid; // 0x10001001

 _DWORD compname_sum;

 char compname[16];

 _BYTE gap[16]; // 0x00

};

where rnd is a random number, compname_sum is the number derived from the computer’s

name, and compname is the computer’s name.

If the server responded with the *NONE* string, the trojan ignores the "silent" time specified in

the configuration and repeats the request. If the received response is different from *NONE*, the

trojan saves this data to the %APPDATA%\\jbl file. This file is then decrypted (using the same

algorithm as the configuration) and divided into commands. The trojan determines the

command to execute based on its first three characters:

opcode = cmdbuf[2] ^ (cmdbuf[1] * cmdbuf[0]);

Command list

Command id cmd Description

0x2718 del To delete a file

0x28D7 get To send the current configuration to the server

0x2A43 cmd To run the command in the command shell and send the result to

the server

0x2B2B dow To send a specified file to the server

0x2C89 sde To change the time interval for connection to the server

0x2C97 rem Self-deletion

0x2D7E wai To idle for a specified period of time

0x2EB5 loa To launch the trojans plug-in

0x2F3D exe To open a file

0x30E1 sle To set the inactivity period for the trojan

48
48

0x322A unl To unload a plug-in and delete it from the disk

0x3353 upc To update the configuration

0x3354 upd To request and install malicious module updates

0x335C upl To get a file from the server and save it to the specified path

BackDoor.Siggen2.3268

A backdoor written in C++ and designed to run on 32- and 64-bit Microsoft Windows operating

systems. The functionality of the 32-bit and 64-bit versions is identical. The backdoor is linked to

the OpenSSL library, which implements AES- and RSA-based encryption, as well as key

generation. It is used in targeted attacks on information systems to gain unauthorized access to

data and transferring it to C&C servers. In the infected system, the sample was located in

System32 as a DLL named ssdtvrs.dll. It was installed by the ssdtvrs service. This description

is based on the 64-bit version.

Operating routine

It exports the service entry point ServiceMain. Once launched, the backdoor registers a

function that handles control requests, creates a thread in which it performs the main functions,

and then waits in a loop for the service to stop.

49
49

The main thread

First, it prepares a configuration that can be stored both in the registry of the infected computer

and in the body of the backdoor. It then decrypts the name of the registry key

Software\Microsoft\Internet Explorer\Security.

The backdoor checks the presence of this key first in the HKCU section, then in the HKLM section

of the registry. Then, it loads the encrypted configuration from a parameter whose name

matches the name of the malicious DLL file (in this case, ssdtvrs). If the configuration is not in

the registry, the backdoor uses the hardcoded one.

The configuration is encrypted with RC4 and the key is generated using the following algorithm:

The configuration is stored as a sequence of blocks.

BYTE BYTE BYTE[item_len]

item_id item_len item_data

The backdoor parses all the blocks in turn and saves the resulting configuration as a structure:

//значения 0xXX - item_id

50
50

struct cfg

{

 DWORD item_0x1E;

 BYTE item_0x1F[32];

 BYTE item_0x20[32];

 BYTE item_0x21[64];

 BYTE C2_0[64];

 WORD C2_0_port;

 BYTE C2_1[32];

 WORD C2_1_port;

 BYTE C2_2[32];

 WORD C2_2_port;

 BYTE item_0x0A[64];

 WORD item_0x0A_word;

 BYTE item_0x0B[32];

 WORD item_0x0B_word;

 BYTE item_0x0C[32];

 WORD item_0x0C_word;

 BYTE C2_index_0x0D;

 BYTE item_0x14[32];

 WORD item_0x14_word;

 BYTE item_0x15[32];

 BYTE item_0x16[32];

 BYTE item_0x17;

 BYTE item_0x28[32];

 SYSTEMTIME time_1;

 SYSTEMTIME time_2;

 BYTE gap[16];

 BYTE item_0x29[64];

 BYTE module_file_name[16];

};

After preparing the configuration, BackDoor.Siggen2.3268 checks that the current system time

ranges between cfg.time_1 and cfg.time_2, and waits until this condition is met.

It then prepares and sends the registration packet to the C&C server. First, it creates an object of

the SBC02DEFE6 class (RTTI structures remained in the backdoor). This object contains another

object that stores connection information, and also encapsulates the AZ092342345 object,

which is responsible for data encryption. After creating the SBC02DEFE6 object, the backdoor

attempts to hinder the debugging process by closing a deliberately incorrect handle. The

exception that occurs is processed; and if the debugger is not present, the backdoor continues

to operate.

51
51

After that, the cfg.C2_index_0x0D parameter is checked, according to which a specific C&C

server is selected from the configuration. The following addresses are hardcoded in the

configuration:

· 144.34.145.168

· snow.swingfished[.]com

The backdoor then creates a TCP socket to connect to the server, and then prepares the

encryption keys. The backdoor has a hardcoded public RSA key, which is encrypted with the

same algorithm that is used to encrypt the registry key that stores the configuration.

The decrypted RSA key is shown below.

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA8W8cpiAwGjiSebyCFRQq

9Mxmdj6zIGGh6R9DJ+HD7KxZTU51y20YfQbNt0n6fSYkTfysuKanHaN59jnfk1mU

buXnoQDLc7GzCRk8f7Btumd251/v7eFXVsXA1qbZHucZpcy/t946VvY+txMbCduQ

7Wg7X+m2GJoQBX11th/1IWOoJ2usqZbzhlAJqR9B4q5xLiei/CbsbP6YFwBjpEb5

9kUOpT1D27LorxqIp9YqaqLtMh4PXLu3gcewN0rRGqHsBH4X2ZRs7yWvm8zMBPFS

HsTK9rTZqWS66WlCc9WS73NAnyFjrwam98aLVmuRkGMTRUFclQp8fd//NiKFeMBX

GQIDAQAB

-----END PUBLIC KEY-----

.\>openssl rsa -noout -text -inform PEM -in pubkey.pem -pubin

Public-Key: (2048 bit)

Modulus:

00:f1:6f:1c:a6:20:30:1a:38:92:79:bc:82:15:14:

2a:f4:cc:66:76:3e:b3:20:61:a1:e9:1f:43:27:e1:

c3:ec:ac:59:4d:4e:75:cb:6d:18:7d:06:cd:b7:49:

fa:7d:26:24:4d:fc:ac:b8:a6:a7:1d:a3:79:f6:39:

df:93:59:94:6e:e5:e7:a1:00:cb:73:b1:b3:09:19:

3c:7f:b0:6d:ba:67:76:e7:5f:ef:ed:e1:57:56:c5:

c0:d6:a6:d9:1e:e7:19:a5:cc:bf:b7:de:3a:56:f6:

52
52

3e:b7:13:1b:09:db:90:ed:68:3b:5f:e9:b6:18:9a:

10:05:7d:75:b6:1f:f5:21:63:a8:27:6b:ac:a9:96:

f3:86:50:09:a9:1f:41:e2:ae:71:2e:27:a2:fc:26:

ec:6c:fe:98:17:00:63:a4:46:f9:f6:45:0e:a5:3d:

43:db:b2:e8:af:1a:88:a7:d6:2a:6a:a2:ed:32:1e:

0f:5c:bb:b7:81:c7:b0:37:4a:d1:1a:a1:ec:04:7e:

17:d9:94:6c:ef:25:af:9b:cc:cc:04:f1:52:1e:c4:

ca:f6:b4:d9:a9:64:ba:e9:69:42:73:d5:92:ef:73:

40:9f:21:63:af:06:a6:f7:c6:8b:56:6b:91:90:63:

13:45:41:5c:95:0a:7c:7d:df:ff:36:22:85:78:c0:

57:19

Exponent: 65537 (0x10001)

After that, the backdoor generates a random WORD type value, which will

be used to form a packet and check the response from the server.

Then, using OpenSSL, it generates a random AES key (256 bits) and generates encryption and

decryption keys.

It uses the RSA key to encrypt the generated key for further transmission to the C&C server.

53
53

The backdoor stores keys in the AZ092342345 object. Its structure can be represented as

follows:

struct AZ092342345

{

 vtable_AZ092342345 *vtable;

 AB2952354 o_AB2952354_response_data;

 AB2952354 o_AB2952354_decoded_data;

 AB2952354 o_AB2952354_3;

 AB2952354 o_AB2952354_4;

 WORD check_word;

 BYTE gap[6];

 RSA **p_RSA; //RSA - the structure from OpenSSL library

 AES_key AES_key;

 WORD rnd_word;

 DWORD dword_362;

};

struct AB2952354 //objects of the AB2952354 class are used as data
containers, such as those sent and received from the server

{

 vtable_AB2952354 *vtable;

 BYTE *p_buffer;

 BYTE *p_buffer_end;

 DWORD data_size;

 CRITICAL_SECTION crit_sect;

};

struct AES_key

{

 char userKey[32];

 char ivec[20];

 int field_34;

 QWORD field_38;

 AES_KEY encryptKey; //AES_KEY structure from OpenSSL

 AES_KEY decryptKey;

};

The packet sent during the handshake has a 0x10A + <rnd> length, where rnd is a random

value from 0 to 63, and comes with the following structure:

WORD DWORD DWORD BYTE[]

проверочное

значение

случайное значение случайная часть

длины пакета

зашифрованный AES-

ключ

54
54

The first test value (WORD) is formed as follows.

The packet is sent to the server and a separate thread is started, which uses select to wait for a

response transmitted to the socket from which the handshake packet was sent. When receiving a

response, it checks the first 2 bytes of the incoming packet..

 If the result is 1, the connection is reset. Otherwise, the backdoor parses the packet with the

following header.

WORD DWORD DWORD DWORD

проверочное

значение

длина пакета с

заголовком

длина упакованных

данных

длина распакованных

данных

The data is encrypted using the AES algorithm with the key sent to the server in a handshake

packet and also compressed by the zlib library.

The KCPOI982S object is initialized in the main backdoor thread and is responsible for

processing commands from the C&C server.

55
55

After initializing the handshake procedure, BackDoor.Siggen2.3268 encrypts the configuration

using RC4 in the main thread and stores it in the registry. Next, it prepares information about the

system for subsequent transmission to the server. The packet header is equivalent to the packet

header received from the server during the handshake process; the data is compressed by zlib

and encrypted using the AES algorithm. The transmitted information about the infected system

is represented by the structure:

struct sysinfo

{

 BYTE id;

 OSVERSIONINFOEXA os_version;

 DWORD CPU_MHz;

 DWORD sin_addr;

 BYTE cfg_item_0x29_or_hostname[64];

 BYTE cfg_C2_index;

 DWORD tick_count_diff;

 char field_F0[64];

};

id is the packet ID. In this case it is equal to 0x66.

sin_addr is the IP address of the C&C server to which the connection is established.

cfg_item_0x29_or_hostname is the value of the configuration parameter with the ID equal

to 0x29. If it is not specified, the name of the infected computer is used as the value.

field_F0 takes values depending on the configuration parameter with the ID equal to 0x1E.

· cfg_item_0x1E == 0 => cfg.item_0x1F

· cfg_item_0x1E == 1 => cfg.item_0x21

· cfg_item_0x1E == 2 => "c"

· cfg_item_0x1E == 3 => "p"

After the sysinfo structure, a random sequence of 0 to 255 bytes is appended.

After sending the system information, an object of the KCPOI982S class is created to process

commands from the C&C server. The main purpose of this object is to check the command ID

and create another object designed to handle a specific command. The KCPOI982S object and

other command handler objects are inherited from the AM1876234af3 class, which contains

only an event descriptor for synchronization and a reference to the SBC02DEFE6 object for

managing the connection.

KCPOI982S creates separate threads for each command and stores an array of descriptors of

these threads and interrupts them in its destructor.

56
56

Processing the C&C server’s commands

The command ID is contained in the 1st byte of the packet payload sent by the server (after

decryption and unpacking).

id Name of the

handler object

Description

0x10 BCJI09RUC To send a list of processes The following structure is formed for

each process:

struct process_info

{

 BYTE id; //0x73

 DWORD PID;

 char sz_ExeFile[x];

 char sz_exe_full_path[x];

}

0x15 AS01243895 To create a command shell from cmd.exe. The backdoor runs

cmd.exe with StdIn,StdOut,StdErr redirection to pipes. It

then sends a packet with the 0x76 byte in the payload. After

that, it attempts to read the result from the pipe and send it to

the server in a loop.

0x01 AF434faf845 To send information about all disks (iterates through the letters,

except A and B). The following structure is formed for each disk:

struct drive_info

{

 BYTE id; //0x67

 BYTE drive_type;

 DWORD total_kbytes;

 DWORD kbytes_available;

 char sz_type_name[x]; //szTypeName field of
the SHFILEINFOA structure after SHGetFileInfoA
call (eg, Local Disk)

 char sz_filesystem_name;

}

0x20 AC92784f908234 To send the configuration to the C&C server. The packet’s

payload is represented as the following structure:

struct config_packet

{

 BYTE id; //0x77

57
57

 cfg config;

}

0x00 - To reset the connection

Artifacts

BackDoor.Siggen2.3268 contains numerous debugging strings and the links are missing.

.rdata:00000001800D4DF8 00000008 C started

.rdata:00000001800D4E00 0000001B C get test connect style: %d

.rdata:00000001800D4E20 00000013 C Read config error!

.rdata:00000001800D4E38 00000024 C begin connecting, connect
style: %d

.rdata:00000001800D4E60 00000015 C - main connect fail!

.rdata:00000001800D4E78 00000032 C !MainThread, sendLoginInfo
error, reconnect again

.rdata:00000001800D4EB0 0000000F C - Not Actived!

.rdata:00000001800D4EC0 00000012 C ++ Server Actived

.rdata:00000001800D4ED8 00000027 C !send Heartbeat error, repeat
connect.

.rdata:00000001800D4F00 0000000F C !in Debug,out\n

.rdata:00000001800D4F10 0000001B C TestConnectModeI %d Error!

.rdata:00000001800D4F30 00000020 C Test Connect BackDomain
Succeed

.rdata:00000001800D4F50 00000016 C begin iBackStyle = %d

.rdata:00000001800D4F68 0000000F C con test again

.rdata:00000001800D4F78 0000001E C Succeed Test, iBackStyle = %d

.rdata:00000001800D4F98 0000001E C Test Failure, Sleep 10-30m!!!

.rdata:00000001800D4FB8 00000035 C Test toatl Failure, Sleep
20_50m!!!, totalcount = %d

.rdata:00000001800D5088 00000016 C configure data key:%s

.rdata:00000001800D50A0 0000000F C !read1 reg, %d

.rdata:00000001800D50B0 0000000F C !read2 reg, %d

.rdata:00000001800D50C0 00000010 C !write1 reg, %d

.rdata:00000001800D50D0 00000010 C !write2 reg, %d

.rdata:00000001800D50E0 00000010 C !write3 reg, %d

.rdata:00000001800D50F0 00000010 C !write4 reg, %d

.rdata:00000001800D5100 00000018 C Public Encrypt failed\n

.rdata:00000001800D5118 00000017 C !UnzipPacket: not flag

.rdata:00000001800D5130 00000016 C !UnzipPacket: Decrypt

.rdata:00000001800D5178 00000015 C @@ TCP Construct end

.rdata:00000001800D5190 0000001C C @@<- TCP begin DisConstruct

.rdata:00000001800D51B0 00000024 C @@-- TCP Disconnect in
DisConstruct

.rdata:00000001800D51D8 0000001A C DisConstruct: closesocket

58
58

.rdata:00000001800D51F8 0000001C C Discontruct: close m_hEvent

.rdata:00000001800D5218 0000001A C @@-> TCP End DisConstruct

.rdata:00000001800D5238 00000027 C TCPConnecting begin, Host:%s,
Port: %d

.rdata:00000001800D5260 00000018 C !Connect, lpszHost = %s

.rdata:00000001800D5278 00000015 C Create Socket error!

.rdata:00000001800D5290 00000021 C !TCP gethostbyname(),lpszHost=
%s

.rdata:00000001800D52B8 00000013 C TCP connect error!

.rdata:00000001800D52D0 00000014 C new key buf error!\n

.rdata:00000001800D52E8 00000012 C const key failed\n

.rdata:00000001800D5300 00000013 C send askey failed\n

.rdata:00000001800D5318 00000017 C TCPConnecting succeed!

.rdata:00000001800D5330 00000018 C <-- TCP disconnect into

.rdata:00000001800D5348 00000019 C <-- TCP disconnect begin

.rdata:00000001800D5368 00000017 C --> TCP disconnect end

.rdata:00000001800D5380 00000018 C <-- TCP disconnect exit

.rdata:00000001800D5398 00000019 C !Send error, Disonnect()

.rdata:00000001800D53B8 0000001A C TCP send1 to SendRetry:%d

.rdata:00000001800D53D8 0000001A C TCP send2 to SendRetry:%d

.rdata:00000001800D53F8 00000017 C Create TCP WorkThread!

.rdata:00000001800D5410 0000001C C begin into WorkThread while

.rdata:00000001800D5430 00000028 C !WorkThread, select error,
Disconnect()

.rdata:00000001800D5458 00000026 C !WorkThread, recv error,
Disconnect()

.rdata:00000001800D5480 00000015 C Exit TCP WorkThread!

.rdata:00000001800D5498 00000024 C !OnRead, dwIoSize = 0,
Disconnect()

.rdata:00000001800D54C0 00000025 C !recv only packet flag,
Disconnect()

.rdata:00000001800D54E8 00000008 C bad buf

.rdata:00000001800D54F0 00000024 C !UnzipPacket failure!,
Disconnect()

.rdata:00000001800D5528 0000000E C JnteroetPpenA

Appendix 1. Indicators of compromise

SHA1 hashes

BackDoor.Skeye

a259db436aa8883cc99af1d59f05f4b1d97c178b: acess.exe

b0ff476e3a273af600840d0f3dcd099274035e76: skeye.exe

59
59

BackDoor.DNSep.1

14a652b5b9d71171224541ce2b950cf55da38190: ccL100U.dll

f76ae6ee508cf22f52b8533d704667a1893860d9: (payload)

BackDoor.RemShell.24

fffec74a6330e25f97b687f989bb287aeb5fbb76: ftps.dll

BackDoor.Siggen2.3268

bfa1e457afbb1f160094f65b456503b64832d249: ssdtvrs.dll

ce3fc5b40231b5a9dd4aeeb0f0c7ef6f7779c53e: ssdtvrs.dll

BackDoor.Farfli.130

b33e65fd1790260ad47a0dbdad2f12f555a0d6ca: Irmon32.dll

Trojan.Mirage.12

fc698eb0d7d6948605a7e5ba6708752b691a3fec: dnvdisp32.dll

BackDoor.PlugX.67

ad5fc8dfe8341d08c118abe72caa7cc8d40efa11: mcutil.dll.bbc

Domains

www2[.]morgoclass[.]com

term[.]internnetionfax[.]com

atob[.]kommesantor[.]com

rps[.]news-click[.]net

www1[.]dotomater[.]club

ns02[.]ns02[.]us

snow[.]swingfished[.]com

60
60

skype[.]swingfished[.]com

dog[.]darknightcloud[.]com

eye[.]darknightcloud[.]com

home[.]sysclearprom[.]space

tick[.]sysclearprom[.]space

atlas[.]golianbooks[.]com

dm[.]golianbooks[.]com

IP

103.97.124[.]193

103.91.67[.]251

144.34.145[.]168

185.70.185[.]231

45.76.34[.]147

	Table of Contents
	Introduction
	Who’s behind the attacks?
	Comparative code analysis of BackDoor.DNSep.1 and BackDoor.Cotx.1
	Comparative code analysis of the Skeye, Mikroceen and Logtu backdoors
	Conclusion
	Operating Routine of Discovered Malware Samples
	BackDoor.Skeye.1
	BackDoor.DNSep.1
	BackDoor.Remshell.24
	BackDoor.Farfli.130
	Trojan.Mirage.12
	BackDoor.Siggen2.3268

	Appendix 1. Indicators of compromise

