
Study of the ShadowPad
APT backdoor and its
relation to PlugX

Doctor Web Head Office

2-12A, 3rd str. Yamskogo polya

Moscow, Russia

125040

Website: www.drweb.com

Phone: +7 (495) 789-45-87

Refer to the official website for regional and international office information.

Study of the ShadowPad APT backdoor and its relation to PlugX

10/26/2020

© Doctor Web, Ltd., 2020. All rights reserved.

This document is the property of Doctor Web, Ltd. (hereinafter - Doctor Web). No part of this

document may be reproduced, published or transmitted in any form or by any means for any

purpose without proper attribution.

Doctor Web develops and distributes Dr.Web information security solutions which provide

efficient protection from malicious software and spam.

Doctor Web customers can be found among home users from all over the world and in

government enterprises, small companies and nationwide corporations.

Dr.Web antivirus solutions are well known since 1992 for continuing excellence in malware

detection and compliance with international information security standards. State certificates and

awards received by the Dr.Web solutions, as well as the globally widespread use of our products

are the best evidence of exceptional trust to the company products.

3
3

Table of Contents

4Introduction

5List of detected malware

6Conclusion

6Operating Routine of Discovered Malware Samples

6BackDoor.ShadowPad.1

44BackDoor.ShadowPad.3

70BackDoor.ShadowPad.4

77BackDoor.Farfli.122

78BackDoor.Farfli.125

103BackDoor.Siggen2.3243

110Appendix 1. Indicators of compromise

4
4

Introduction

In July 2020, we released a study of targeted attacks on state institutions in Kazakhstan and

Kyrgyzstan with a detailed analysis of malware found in compromised networks. During the

investigation, Doctor Web specialists analyzed and described several groups of trojan programs,

including new samples of trojan families already encountered by our virus analysts, as well as

previously unknown trojans. The most notable discovery was the samples of the XPath family.

We were also able to find evidence that allowed us to link two initially independent incidents. In

both cases, the attackers used a similar selection of malware, including the same specialized

backdoors that infected domain controllers in the attacked organizations.

During the examination, analysts studied samples of PlugX multi-module backdoors used for

initial penetration into the network infrastructure. The analysis showed that certain PlugX

modifications used the same domain names of C&C servers, as did other backdoors related to

targeted attacks on Central Asian state institutions. The detection of the PlugX programs

indicates Chinese APT groups are possibly involved in these incidents.

According to our data, the unauthorized presence in both networks lasted for more than three

years, and several hacker groups could be behind the attacks. Investigations of such complex

cyber incidents involve long-term work, so they are rarely covered by a single article.

The Doctor Web virus laboratory received new samples of malware found on the infected

computers in the local network of a state institution in Kyrgyzstan.

In addition to the malware described in the previous article, the ShadowPad backdoor deserves

particular attention. Various modifications of this malware family are a well-known tool of the

Winnti APT group, presumably of Chinese origin, active since at least 2012. It is noteworthy that

the Farfli backdoor was also installed on computer along with ShadowPad, and both programs

referred to the same C&C server. Additionally, we uncovered several PlugX modifications on the

same computer.

In this study we analyzed the algorithms of the detected backdoors. Special attention is paid to

the code similarities between the ShadowPad and PlugX samples, as well as to some

intersections in their network infrastructure.

https://news.drweb.com/show/?i=13907&lng=en
https://vms.drweb.com/search/?q=Trojan.XPath&lng=en
https://vms.drweb.com/search/?q=BackDoor.PlugX&lng=en
https://vms.drweb.com/search/?q=BackDoor.ShadowPad&lng=en
https://vms.drweb.com/search/?q=BackDoor.Farfli&lng=en

5
5

List of detected malware

The following backdoors were found on the infected computer:

SHA256 hashes Detection name The C&C server Installation

dates

ac6938e03f2a076152ee4c

e23a39a0bfcd676e4f0b03

1574d442b6e2df532646

BackDoor.ShadowPad.1 www[.]pneword[.]net 07.09.2018

13:14:57.664

9135cdfd09a08435d344cf

4470335e6d5577e250c2f0

0017aa3ab7a9be3756b3

2c4bab3df593ba1d36894

e3d911de51d76972b6504

d94be22d659cff1325822e

BackDoor.Farfli.122

BackDoor.Farfli.125

www[.]pneword[.]net 03.11.2017

09:06:07.646

3ff98ed63e3612e56be10e

0c22b26fc1069f85852ea1c

0b306e4c6a8447c546a

(DLL loader)

b8a13c2a4e09e04487309

ef10e4a8825d08e2cd4112

846b3ebda17e013c97339

(main module)

BackDoor.PlugX.47

BackDoor.PlugX.48

www[.]mongolv[.]com 29.12.2016

14:57:00.526

32e95d80f96dae768a8230

5be974202f1ac8fcbcb985

e3543f29797396454bd1

(DLL loader)

b8a13c2a4e09e04487309

ef10e4a8825d08e2cd4112

846b3ebda17e013c97339

(main module)

BackDoor.PlugX.47

BackDoor.PlugX.48

www[.]arestc[.]net 23.03.2018

13:06:01.444

b8a13c2a4e09e04487309

ef10e4a8825d08e2cd4112

846b3ebda17e013c97339

(main module)

BackDoor.PlugX.48 www[.]icefirebest[.]com 03.12.2018

14:12:24.111

6
6

For further research, we found and analyzed other samples of the ShadowPad family in order to

perform a detailed examination of the similarities between the ShadowPad and PlugX

backdoors:

· BackDoor.ShadowPad.3

· BackDoor.ShadowPad.4—a modification of ShadowPad that was part of a self-extracting

WinRAR dropper. It loaded an atypical for this family module in the form of a DLL library.

A thorough study of ShadowPad samples and their comparison with previously studied PlugX

modifications indicates a high similarity in the operation principles and modular structures of the

backdoors from both families. These malicious programs are united not only by the general

concept, but also by the nuances of the code: certain development techniques, ideas, and

technical solutions are nearly identical. An important point is that both backdoors were located

in the compromised network of a state institution in Kyrgyzstan.

Conclusion

The available data allow us to conclude that these families are related in terms of simple code

borrowing or the development of both programs by one author or a group of authors. In the

second case, it is very likely that ShadowPad is an evolution of PlugX as a newer and more

advanced APT tool. The storage format of the malicious modules used in the ShadowPad makes

it much more difficult to detect them in RAM.

Operating Routine of Discovered Malware Samples

BackDoor.ShadowPad.1

It is a multi-module backdoor written in C and Assembler and designed to run on 32-bit and 64-

bit Microsoft Windows operating systems. It is used in targeted attacks on information systems

for gaining unauthorized access to data and transferring it to C&C servers. Its key feature is

utilizing hardcoded plug-ins that contain the main backdoor’s functionality.

Operating routine

The backdoor’s DLL library is loaded into RAM by DLL Hijacking using the genuine executable file

TosBtKbd.exe from TOSHIBA CORPORATION. On the infected computer, the file was named

msmsgs.exe.

7
7

.>sigcheck -a msmsgs.exe_

 Verified: Signed

 Signing date: 5:24 24.07.2008

 Publisher: TOSHIBA CORPORATION

 Company: TOSHIBA CORPORATION.

 Description: TosBtKbd

 Product: Bluetooth Stack for Windows by TOSHIBA

 MachineType: 32-bit

 Binary Version: 6.2.0.0

 Original Name: TosBtKbd.exe

 Internal Name: n/a

 Copyright: Copyright (C) 2005-2008 TOSHIBA CORPORATION, All rights
reserved.

 Comments: n/a

 Entropy: 5.287

The backdoor can be related to BackDoor.Farfli.125, since both malware programs use the same

C&C server—www[.]pneword[.]net.

The sample was located on the infected computer in C:\ProgramData\Messenger\ and

was installed as the Messenger service.

It is worth noting that BackDoor.Farfli.125 can execute the 0x7532 command, which is used to

start a service with the same name—Messenger.

Start of operation

The malicious library has two export functions:

SetTosBtKbdHook

UnHookTosBtKbd

The module name specified in the export table is TosBtKbd.dll.

The DLLMain function and the UnHookTosBtKbd export function are stubs.

8
8

The SetTosBtKbdHook function performs an exhaustive search through the handles in order to

find objects whose names contain TosBtKbd.exe and then closes them.

int __stdcall check_handles()

{

 ULONG v0; // ecx

 HMODULE v1; // eax

 int result; // eax

 int iter; // esi

 int v4; // eax

 ULONG ReturnLength; // [esp+0h] [ebp-4h] BYREF

 ReturnLength = v0;

 if (*(_DWORD *)NtQueryObject

 || (v1 = GetModuleHandleA(aNtdllDll),

 result = (int)GetProcAddress(v1, aNtqueryobject),

 (*(_DWORD *)NtQueryObject = result) != 0))

 {

 iter = 0;

 while (1)

 {

 if (NtQueryObject((HANDLE)(4 * iter), ObjectNameInformation,
&object__name_info, 0x1000u, &ReturnLength) >= 0)

 {

 v4 = lstrlenW(object__name_info.Name.Buffer);

 do

 --v4;

 while (v4 > 0 && object__name_info.Name.Buffer[v4] != 92);

 if (!lstrcmpiW(&object__name_info.Name.Buffer[v4 + 1], String2))

 break;

9
9

 }

 if (++iter >= 100000)

 return 0;

 }

 result = CloseHandle((HANDLE)(4 * iter));

 }

 return result;

}

After that, the shellcode stored in the backdoor body is decrypted using SetTosBtKbdHook.

10
10

Shellcode decryption algorithm:

def LOBYTE(v):

 return v & 0xFF

def dump_shellcode(addr, size, key):

 buffer = get_bytes(addr, size)

 result = b""

11
11

 for x in buffer:

 result += bytes([x ^ LOBYTE(key)])

 key = ((key * 0x6A730000) - (((key >> 0x10) * 0x39F3958D)) -
0x5C0BB335) & 0xFFFFFFFF

 i = 0

 for x in result:

 patch_byte(addr + i, x)

 i += 1

The decrypted shellcode utilizes obfuscation by using two consecutive conditional JMP

instructions at a single address.

12
12

After bypassing obfuscation, the function becomes correct:

The shellcode is designed for loading the main payload, which is a disassembled PE module

without the MZ and PE headers. A custom header consisting of separate parts of standard

headers is used for the loading.

13
13

struct section

{

 DWORD RVA;

 DWORD raw_data_offset;

 DWORD raw_data_len;

};

struct module_header

{

 DWORD key;

 DWORD key_check;

 DWORD import_table_RVA;

 DWORD original_ImageBase;

 DWORD relocation_table_RVA;

 DWORD relocation_table_size;

 DWORD IAT_RVA;

 DWORD IAT_size;

 DWORD EP_RVA;

 WORD HDR32_MAGIC;

 WORD word;

 DWORD number_of_sections;

 DWORD timestamp;

 section section_1;

 section section_2;

 section section_3;

 section section_4;

};

The header is stored in the shellcode after the first block of instructions.

14
14

The module_loader function then loads the payload directly. First, through the PEB structure,

the backdoor obtains the addresses of the following functions from kernel32:

LoadLibraryA

GetProcAddress

VirtualAlloc

Sleep

Kernel32 library name and the specified APIs are searched by the hash of the name, which is

calculated by the algorithm:

def rol(val, r_bits, max_bits=32):

 return (val << r_bits%max_bits) & (2**max_bits-1) | ((val &
(2**max_bits-1)) >> (max_bits-(r_bits%max_bits)))

def ror(val, r_bits, max_bits=32):

15
15

 return ((val & (2**max_bits-1)) >> r_bits%max_bits) | (val <<
(max_bits-(r_bits%max_bits)) & (2**max_bits-1))

def libnamehash(lib_name):

 result = 0

 b = lib_name.encode()

 for x in b:

 result = ror(result, 8)

 x |= 0x20

 result = (result + x) & 0xFFFFFFFF

 result ^= 0x7C35D9A3

 return result

def procnamehash(proc_name):

 result = 0

 b = proc_name.encode()

 for x in n:

 result = ror(result, 8)

 result = (result + x) & 0xFFFFFFFF

 result ^= 0x7C35D9A3

 return result

After receiving the API addresses, the backdoor checks the integrity of the header values using

an algorithm based on the XOR operation—module_header.key ^

module_header.key_check. The value must be 0x7C35D9A3 and it is the same value used

when hashing function names from kernel32. After that, it checks the value of the signature

module_header.HDR32_MAGIC signature that must be equal to 0x10B. The backdoor then

allocates an executable buffer of the module_header.import_table_RVA size and adds

0x4000 for the module.

After that, it fills a block with the size of 0x1000 bytes at the beginning of the

module_header.section_1.RVA allocated buffer. That buffer is where the PE header of the

loaded module should have been located.

16
16

The ECX register initially contains the address of the allocated executable buffer.

The backdoor then loads the module sections according to their RVA (Relative Virtual Address).

Section data is stored in the shellcode after the header, and the offset to the

(section.raw_data_offset) data is counted from the beginning of the header.

After the sections, the program processes relocations that are stored as

IMAGE_BASE_RELOCATION structures, but each WORD, which is responsible for the relocation

type and for the offset from the beginning of the block, is encrypted. The initial key is taken

from module_header.key, and it changes after each iteration. It is worth noting that the key

obtained after all iterations will be used for processing import functions.

Relocations processing algorithm:

import struct

def relocations(image_address, original_image_base, relocation_table_RVA):

 global key

 relocation_table_addr = image_address + relocation_table_RVA

 reloc_hdr_data = get_bytes(relocation_table_addr, 8)

 block_address, size_of_block = struct.unpack('<II', reloc_hdr_data)

 while size_of_block:

 if ((size_of_block - 8) >> 1) > 0:

17
17

 block = get_bytes(relocation_table_addr + 8, size_of_block -
8)

 i = 0

 while i < ((size_of_block - 8) >> 1):

 reloc = struct.unpack('<H', block[i*2:i*2+2])[0]

 reloc_type = ((reloc ^ key) & 0xFFFF) >> 0x0C

 offset = (reloc ^ key) & 0xFFF

 offset_high = (((key >> 0x10) + reloc) & 0xFFFFFFFF) |
((key << 0x10) & 0xFFFFFFFF)

 key = offset_high

 if reloc_type == 3:

 patch_addr = offset + image_address + block_address

 delta = (image_address - original_image_base) &
0xFFFFFFFF

 value = get_wide_dword(patch_addr)

 patch_dword(patch_addr, (value + delta) & 0xFFFFFFFF)

 elif reloc_type == 0x0A:

 patch_addr = image_address + offset + + block_address

 delta = (image_address - original_image_base) &
0xFFFFFFFF

 old_low = get_wide_dword(patch_addr)

 old_high = get_wide_dword(patch_addr + 4)

 patch_dword(patch_addr, (old_low + offset) &
0xFFFFFFFF)

 patch_dword(patch_addr + 4, (old_high + offset_high) &
0xFFFFFFFF)

 i += 1

 relocation_table_addr += size_of_block

 reloc_hdr_data = get_bytes(relocation_table_addr, 8)

 block_address, size_of_block = struct.unpack('<II',
reloc_hdr_data)

18
18

After all the relocations are processed, the structure is filled with null values.

Next, BackDoor.ShadowPad.1 starts processing the import functions. In general, the procedure

is standard, but the names of libraries and functions are encrypted. The key that was modified

after processing the relocations is used, and is also changed after each encryption iteration. After

processing the next import function, its address is not placed directly in the cell specified relative

to IMAGE_IMPORT_DESCRIPTOR.FirstThunk. Instead, a block of instructions is generated

that passes control to the API:

mov eax, <addr>

neg eax

jmp eax

Algorithm for processing import functions:

def imports(image_address, IAT_RVA,):

 global key

 IAT_address = image_address + IAT_RVA

 import_table_address = image_address + 0x1A000

 import_descriptor_address = IAT_address

 while True:

 OriginalThunkData, TimeDateStamp, ForwarderChain, Name, FirstThunk =
struct.unpack('<IIIII', get_bytes(import_descriptor_address, 0x14))

 TimeDateStamp = 0

 ForwarderChain = 0

 OriginalThunkData_address = image_address + OriginalThunkData

 FirstThunk_address = image_address + FirstThunk

 libname_address = image_address + Name

 n1 = get_wide_byte(libname_address)

 libname_decrypted = bytes([(n1 ^ key) & 0xFF])

 key = ((key >> 0x08) + c_byte(n1).value) | ((key << 0x18) &
0xFFFFFFFF)

 i = 1

 nb = get_wide_byte(libname_address + i)

 while libname_decrypted[-1]:

19
19

 libname_decrypted += bytes([(nb ^ key) & 0xFF])

 key = ((key >> 0x08) + c_byte(nb).value) | ((key << 0x18) &
0xFFFFFFFF)

 i += 1

 nb = get_wide_byte(libname_address + i)

 libname_decrypted = libname_decrypted[:-1]

 print("Imports from {0}".format(libname_decrypted[:-1]))

 thunk = get_wide_dword(OriginalThunkData_address)

 it_ptr = 0

 j = 0

 while thunk:

 name_address = image_address + thunk + 2

 nb1 = get_wide_byte(name_address)

 func_name = bytes([(nb1 ^ key) & 0xFF])

 key = ((key >> 0x08) + c_byte(nb1).value) | ((key << 0x18) &
0xFFFFFFFF)

 i = 1

 nb = get_wide_byte(name_address + i)

 while func_name[-1]:

 func_name += bytes([(nb ^ key) & 0xFF])

 key = ((key >> 0x08) + c_byte(nb).value) | ((key << 0x18) &
0xFFFFFFFF)

 i += 1

 nb = get_wide_byte(name_address + i)

 func_name = func_name[:-1]

 print("Function {0}".format(func_name))

 j_type = key % 5

 if j_type == 0:

 patch_byte(import_table_address, 0xE8)

20
20

 elif j_type == 1:

 patch_byte(import_table_address, 0xE9)

 elif j_type == 2:

 patch_byte(import_table_address, 0xFF)

 elif j_type == 3:

 patch_byte(import_table_address, 0x48)

 elif j_type == 4:

 patch_byte(import_table_address, 0x75)

 else:

 patch_byte(import_table_address, 0x00)

 import_table_address += 1

 patch_dword(FirstThunk_address + it_ptr, import_table_address)
#addr to trampoline

 func_addr = binascii.crc32(func_name) & 0xFFFFFFFF

 patch_byte(import_table_address, 0xB8)

 patch_byte(import_table_address + 1, func_addr)

 patch_word(import_table_address + 5, 0xD8F7)

 patch_word(import_table_address + 7, 0xE0FF)

 import_table_address += 9

 j += 1

 it_ptr = j << 2

 thunk = get_wide_dword(OriginalThunkData_address + it_ptr)

 import_descriptor_address += 0x14

 if not get_wide_dword(import_descriptor_address):

 break

The import table is also filled with null values after processing.

The control is then passed to the loaded module. Arguments are passed as:

· Address of the beginning of the buffer where the module is loaded,

21
21

· Value 1 (code),

· Pointer to the shellarg structure.

At the entry point, the loaded module checks the code passed from the loader:

· 1—the main functionality,

· 0x64, 0x65—no action provided,

· 0x66—returns the code 0x64 in the third argument,

· 0x67—decrypts and returns the Root string (hereinafter Root—the name of the module),

· 0x68—in the third argument returns a pointer to the table of functions implemented in this

module.

Decryption algorithm:

def decrypt_str(addr):

 key = get_wide_word(addr)

 result = b""

 i = 2

 b = get_wide_byte(addr + i)

22
22

 while i < 0xFFA:

 result += bytes([b ^ (key & 0xFF)])

 key = (((key >> 0x10) * 0x1447208B) + (key * 0x208B0000) -
0x4875A15) & 0xFFFFFFFF

 i += 1

 b = get_wide_byte(addr + i)

 if not result[-1]:

 break

 result = result[:-1]

 return result

It is worth noting that the code snippets contained in this module, as well as some objects, are

typical of the BackDoor.PlugX family.

When called with the code 1, the module proceeds to perform the main functions. At first, the

program registers a top-level exception handler. When receiving control, the handler generates a

debug string with information about the exception.

The program then outputs it using the OutputDebugString function, and writes it to the log

file located in %ALLUSERPROFILE%\error.log.

https://vms.drweb.ru/search/?q=BackDoor.PlugX
https://vms.drweb.ru/search/?q=BackDoor.PlugX

23
23

Exception handlers are also registered in the BackDoor.PlugX family. In particular, in

BackDoor.PlugX.38 a string with information about the exception is formed, but the format

differs slightly:

https://vms.drweb.com/virus/?lng=en&i=21507830

24
24

After registering the handler, a table of auxiliary functions is formed that is used for interaction

between modules. Next, Root proceeds to load the additional built-in modules.

25
25

Each module is stored in an encrypted form and also compressed using the QuickLZ algorithm.

At the beginning, the module has a header size of 0x14 bytes. The header is decoded during the

first step. Encryption algorithm:

import struct

def LOBYTE(v):

 return v & 0x000000FF

def BYTE1(v):

 return (v & 0x0000FF00) >> 8

def BYTE2(v):

 return (v & 0x00FF0000) >> 16

def HIBYTE(v):

 return (v & 0xFF000000) >> 24

def decrypt_module(data, data_len, init_key):

 key = []

 for i in range(4):

 key.append(init_key)

 k = 0

 result = b""

 if data_len > 0:

 i = 0

 while i < data_len:

 if i & 3 == 0:

 t = key[0]

26
26

 key[0] = (0x9150017B - (t * 0xD45A840)) & 0xFFFFFFFF

 elif i & 3 == 1:

 t = key[1]

 key[1] = (0x95D6A3A8 - (t * 0x645EE710)) & 0xFFFFFFFF

 elif i & 3 == 2:

 t = key[2]

 key[2] = (0xD608D41B - (t * 0x1ED33670)) & 0xFFFFFFFF

 elif i & 3 == 3:

 t = key[3]

 key[3] = (0xD94925D3 - (t * 0x68208D35)) & 0xFFFFFFFF

 k = (k - LOBYTE(key[i & 3])) & 0xFF

 k = k ^ BYTE1(key[i & 3])

 k = (k - BYTE2(key[i & 3])) & 0xFF

 k = k ^ HIBYTE(key[i & 3])

 result += bytes([data[i] ^ k])

 i += 1

 return result

The initial value of the encryption key is stored in the module header. The structure looks as

follows:

struct plugin_header

{

 DWORD key;

 DWORD flags;

 DWORD dword;

 DWORD compressed_len;

 DWORD decompressed_len;

};

27
27

After decrypting the header, the backdoor checks the value of flags. If the 0x8000 flag is set,

it means that the module consists of only one header. Then the first byte’s zero bit value is

checked in the decrypted block. If the zero bit has the value 1, it means the module body is

compressed by the QuickLZ algorithm.

After unpacking, the malware checks the size of the resulting data with the values in the header

and proceeds directly to loading the module. To do so, it allocates an executable memory buffer

to which it copies the load function and then passes control to it. Each module has the same

format as the Root module, so it has its own header and encrypted import functions and

relocations; therefore, loading occurs in the same way. After the module is loaded, the loader

function calls its entry point with the code 1. Each module, like Root, initializes its function table

using this code. Then Root calls the entry point of the loaded module sequentially with the

codes 0x64, 0x66, and 0x68. This way, the backdoor initializes the module and passes it

pointers to the necessary objects.

Modules are represented as objects combined in a linked list. Referring to a specific module is

performed using the code the plug-in puts in its object after calling its entry point with the code

0x66.

struct loaded_module

{

 LIST_ENTRY list;

 DWORD run_count;

 DWORD timestamp;

 DWORD code_id;

 DWORD field_14;

 BOOL loaded;

 BOOL unk;

 BOOL module_is_PE;

 DWORD module_size;

 LPVOID module_base;

 Root_helper *func_tab; //указатель на таблицу функций модуля Root

}

When referring to the module entry point with the code 0x67, a string is decrypted and

returned, which can be designated as the module name:

· 1—Plugins

28
28

· 2—Online

· 3—Config

· 4—Install

· 5—TCP

· 6—HTTP

· 7—UDP

· 8—DNS

If one converts the timestamp fields from the headers of each plugin to dates, one gets the

correct date and time values:

· Plugins—2017-07-02 05:52:53

· Online—2017-07-02 05:53:08

· Config—2017-07-02 05:52:58

· Install—2017-07-02 05:53:30

· TCP—2017-07-02 05:51:36

· HTTP—2017-07-02 05:51:44

· UDP—2017-07-02 05:51:50

· DNS—2017-07-02 05:51:55

After loading all the Root modules, the malware searches the list for the Install module and

calls the second of the two functions located in its function table.

Install

First of all, the backdoor gets the SeTcbPrivilege and SeDebugPrivilege privileges. Then

it obtains the configuration using the Config module. To access functions, the adapter

functions of the following type are used:

29
29

Through the object that stores the list of loaded modules, the backdoor finds the necessary one

using the code, then the necessary function is called through the table.

During the first step of the configuration initialization, the buffer stored in the Root module is

checked. If the first four bytes of this buffer are X, this means the backdoor needs to create a

default configuration. Otherwise, this buffer is an encoded configuration. The configuration is

stored in the same format as plug-ins—it is compressed using the QuickLZ algorithm and

encrypted using the same algorithm used for plug-in encryption. 0x858 bytes are reserved for

the decrypted and unpacked configuration. Its structure can be represented as follows:

struct config

{

 WORD off_id; //lpBvQbt7iYZE2YcwN

 WORD offset_1; //Messenger

 WORD off_bin_path; //%ALLUSERSPROFILE%\Messenger\msmsgs.exe

 WORD off_svc_name; //Messenger

 WORD off_svc_display_name; //Messenger

 WORD off_svc_description; //Messenger

30
30

 WORD
off_reg_key_install; //SOFTWARE\Microsoft\Windows\CurrentVersion\Run

 WORD off_reg_value_name; //Messenger

 WORD off_inject_target_1; //%windir%\system32\svchost.exe

 WORD off_inject_target_2; //%windir%\system32\winlogon.exe

 WORD off_inject_target_3; //%windir%\system32\taskhost.exe

 WORD off_inject_target_4; //%windir%\system32\svchost.exe

 WORD off_srv_0; //HTTP://www.pneword.net:80

 WORD off_srv_1; //HTTP://www.pneword.net:443

 WORD off_srv_2; //HTTP://www.pneword.net:53

 WORD off_srv_3; //UDP://www.pneword.net:53

 WORD off_srv_4; //UDP://www.pneword.net:80

 WORD off_srv_5; //UDP://www.pneword.net:443

 WORD off_srv_6; //TCP://www.pneword.net:53

 WORD off_srv_7; //TCP://www.pneword.net:80

 WORD off_srv_8; //TCP://www.pneword.net:443

 WORD zero_2A;

 WORD zero_2C;

 WORD zero_2E;

 WORD zero_30;

 WORD zero_32;

 WORD zero_34;

 WORD zero_36;

 WORD off_proxy_1; //HTTP\n\n\n\n\n

 WORD off_proxy_2; //HTTP\n\n\n\n\n

 WORD off_proxy_3; //HTTP\n\n\n\n\n

 WORD off_proxy_4; //HTTP\n\n\n\n\n

 DWORD DNS_1; //8.8.8.8

31
31

 DWORD DNS_2; //8.8.8.8

 DWORD DNS_3; //8.8.8.8

 DWORD DNS_4; //8.8.8.8

 DWORD timeout_multiplier; //0x0A

 DWORD field_54; //zero

 //data

};

Fields named off_* contain offsets to encrypted strings from the beginning of the

configuration. The strings are encrypted with the same algorithm as used to encrypt the names

of the plug-ins. After initialization, the backdoor also attempts to get the configuration from the

file located in the %ALLUSERSPROFILE%\<rnd1>\<rnd2>\<rnd3>\<rnd4> directory. The

path and file name elements are generated during execution and depend on the serial number of

the system partition.

After initializing the configuration, the mode parameter is checked, which is stored in the

shellarg structure. That structure is filled in by the loader (shellcode) and stored in the

stage_1 module.

struct shellarg

{

 module_header *p_module_header;

 DWORD module_size;

 DWORD mode;

 DWORD unk;

}

The algorithm provides a number of possible values for the mode parameter—2, 3, 4, 5,

6, 7. If the value is different from the listed ones, the backdoor is installed in the system, and

then the main functions are performed.

A series of values 2, 3 ,4—to begin interaction with the C&C server, bypassing the

installation.

A series of values 5, 6—to work with the plug-in with the code 0x6A stored in the registry.

32
32

Value 7—using the IFileOperation interface, the source module is copied to %TEMP%, as

well as to System32 or SysWOW64, depending on the system bitness. This is necessary to

restart the backdoor with UAC bypass using the wusa.exe file.

Backdoor installation process

During installation, the backdoor checks the current path of the executable file by comparing it

with the value of off_bin_path from the configuration (%ALLUSERSPROFILE%

\Messenger\msmsgs.exe). If the path does not match and the backdoor is launched for the

first time, a mutex is created, the name of which is generated as follows:

Format of the mutex name for wsprintfW is Global\%d%d%d.

Then checks whether UAC is enabled. If control is disabled, the malware creates the

control.exe process (from System32 or SysWOW64, depending on the system's bitness)

with the CREATE_SUSPENDED flag. After that, the backdoor injects the Root module into it,

using WriteProcessMemory. Before doing this, the backdoor also implements a function that

loads the module and transfers control to it. If UAC is enabled, this step is skipped.

The main executable file (msmsgs.exe) and TosBtKbd.dll are copied to the directory specified in

the off_bin_path parameter and then installed as a service. The service name, display name,

and description are contained in the configuration (parameters off_svc_name,

off_svc_display_name, and off_svc_description). In this sample all three parameters

have the Messenger value. If the service fails to start, the backdoor is registered in the registry.

The key and parameter name for this case are also stored in the configuration

(off_reg_key_install and off_reg_value_name parameters).

After installation, the backdoor attempts to inject the Root module into one of the processes

specified in the configuration (off_inject_target_<1..4>). If successful, the current

process terminates, and the new process (or service) proceeds to interact with the C&C server.

A separate thread is created for this purpose. After that, a new registry key is created or an

existing registry key is opened, which is used as the malware's virtual file system. The key is

located in the Software\Microsoft\<key> branch, and the <key> value is also generated

depending on the serial number of the system volume. The key can also be located in the HKLM

and HKCU, depending on the privileges of the process. Next, the RegNotifyChangeKey

function tracks changes in this key. Each parameter is a compressed and encrypted plug-in. The

backdoor extracts each value and loads it as a module, adding it to the list of available ones.

33
33

This functionality is executed in a separate thread.

The next step generates a pseudo-random sequence from 3 to 9 bytes long, which is written to

the registry in the SOFTWARE\ key located in the HKLM or HKCU. The parameter name is also

generated and is unique for each computer. This value is used as the ID of the infected device.

After that, the backdoor extracts the address of the first C&C server from the configuration. The

server storage format is as follows: <protocol>://<address>:<port>. In addition to the

values that explicitly define the protocol used (HTTP, TCP, UDP), the URL value can also be

specified. In this case, the backdoor refers to this URL and receives a new address of the C&C

server in response, using the domain generation algorithm (DGA). The algorithm generates the

string:

wstr *__stdcall dga(wstr *p_wstr)

{

 unsigned int v1; // ecx

 unsigned int v2; // edi

 unsigned int v3; // esi

 unsigned int v4; // edx

 char v5; // dl

 wstr *v6; // eax

34
34

 wstr *v7; // esi

 wstr tmp_str; // [esp+10h] [ebp-34h] BYREF

 char generated_char_str[16]; // [esp+20h] [ebp-24h] BYREF

 struct _SYSTEMTIME SystemTime; // [esp+30h] [ebp-14h] BYREF

 GetSystemTime_0(&SystemTime);

 if (SystemTime.wDay > 0xAu)

 {

 if (SystemTime.wDay > 0x14u)

 v1 = 0xE52F65F3 * SystemTime.wYear - 0x2527D2DD * SystemTime.wMonth
- 0x4BA7EAF5;

 else

 v1 = 0xF108D240 * SystemTime.wMonth - 0x78C6249D * SystemTime.wYear
- 0x17AB943D;

 }

 else

 {

 v1 = 0xF5D6C030 * SystemTime.wMonth - 0x5FBD1755 * SystemTime.wYear -
0x5540E1B0;

 }

 v2 = 0;

 v3 = v1 % 7;

 do

 {

 v4 = v1 % 0x34;

 if (v1 % 0x34 >= 0x1A)

 v5 = v4 + 39;

 else

 v5 = v4 + 97;

 v1 = 13 * v1 + 7;

35
35

 generated_char_str[v2++] = v5;

 }

 while (v2 <= v3 + 7);

 generated_char_str[v3 + 8] = 0;

 v6 = wstr::assign_char_str_pl2(&tmp_str, generated_char_str);

 v7 = (wstr *)wstr::init_by_wchar_pl2(p_wstr, (LPCWSTR)v6->buffer_wchar);

 wstr::clean_pl2(&tmp_str);

 return v7;

}

The resulting string is combined with the string stored in the configuration, using the part before

the @ symbol. The received URL is used for an HTTP request, which is answered with the encoded

address of the C&C server.

After that, a connection object is created that corresponds to the protocol specified for this

server.

TCP

SOCKS4, SOCKS5, and HTTP proxy protocols are supported when connecting over TCP. At the

beginning, a socket is created and a connection to the server is established in keep-alive mode.

A packet with the following header format is used for communication with the server:

struct packet_header

{

 DWORD key;

 DWORD id;

 DWORD module_code;

 DWORD compressed_len;

 DWORD decompressed_len;

};

36
36

HTTP

When using the HTTP protocol, data is sent by a POST request:

Data transfer over HTTP is performed by the handler function in a separate thread. The

mechanism is similar to that of BackDoor.PlugX.

DNS servers from the configuration are used to resolve the addresses of C&C servers (in this

sample all 4 addresses are 8.8.8.8). The first packet sent to the server is a sequence of zeros from

0 to 0x3f bytes in length. The length is selected randomly.

The backdoor receives a response from the server, which is then decrypted and unpacked. Then,

the packet header checks the module_code value, which contains the code of the plug-in for

which the command was received. The backdoor refers to the plug-in whose code is specified in

the command and calls the function for processing commands from its table. The ID of the

command itself is contained in the id field of the header.

Operating with plug-ins

Command IDs for the Plugins module can have the following values id—0x650000,

0x650001, 0x650002, 0x650003, or 0x650004. In fact, the Plugins module is a plug-in

manager, allowing one to register new plug-ins and delete existing ones.

Command ID Description

0x650003 Deletes the specified plug-in from the storage in the registry.

0x650000 Sends information about available plug-ins.

Value Size, byte

plug-in name variable length null-terminated string

number of plug-in calls 4

37
37

Command ID Description

DateTimeStamp 4

plug-in code 4

loaded_module.field_14 (unknown) 4

status (loaded or not) 4

initialized 4

size 4

base 8

0x650001 Body of the command contains a new plug-in. The plug-in format is the same

as the built-in ones. The backdoor compresses it with the QuickLZ algorithm,

encrypts it and stores it in the registry storage, then pauses the current thread

so the plug-in processing thread loads a new plug-in from the registry storage.

0x650002 The command contains the name of the DLL that the backdoor attempts to

load, and then sequentially calls its entry point with dwReason 0x64,

0x66, 0x68.

0x650004 The command contains the module code. If a plug-in with the specified code is

present in the list, the backdoor deinitializes it.

Online

The command IDs for the Online plug-in can have the values 0x680002, 0x680003,

0x680004, or 0x680005.

Command ID Description

0x680002 Starts processing commands for plug-ins in a separate thread and initializes a

new connection to the current server.

0x680003 Sends system information. It can be represented as the structure:

struct date

{

 BYTE year; //+0x30

38
38

Command ID Description

 BYTE month;

 BYTE day;

 BYTE hour;

 BYTE minute;

 BYTE second;

 BYTE space;

}

struct sysinfo

{

 byte id[8];

 DWORD datestamp1; //20150810

 DWORD datestamp2; //20170330

 BYTE year; //+0x30

 BYTE month;

 BYTE day;

 BYTE hour;

 BYTE minute;

 BYTE second;

 BYTE space;

 DWORD module_code;

 WORD module_timestamp; //the lower 2 bytes of the
loaded_module.timestamp field of the connection module

 DWORD IP_address;

 LARGE_INTEGER total_physical_memory;

 DWORD cpu_0_MHZ;

39
39

Command ID Description

 DWORD number_of_processors;

 DWORD dwOemID;

 LARGE_INTEGER
total_disk_space[number_of_disks]; //iterates all disks
starting from C:

 DWORD pels_width; //screen width in pixels

 DWORD pels_height; //screen height in pixels

 DWORD LCID;

 LARGE_INTEGER perfomance_frequency; //pseudo-random
value generated using QueryPerformanceCounter and
QueryPerformanceFrequency

 DWORD current_PID;

 DWORD os_version_major;

 DWORD os_version_minor;

 DWORD os_version_build_number;

 DWORD os_version_product_type;

DWORD sm_Server_R2_build_number; //GetSystemMetrics(SM_SERVE
RR2)

 //the strings below - null-terminated

 char hostname[x];

 char domain_name[x];

 char domain__username[x]; //separated "/"

 char module_file_name[x];

 char osver_info_szCSDVersion[x];

 char str_from_config_offset1[x]; //Messenger

}

The id value is the unique identifier of the infected computer stored in the

registry.

40
40

Command ID Description

It is worth noting that the values of the datestamp1 and datestamp2 fields

are set to 20150810 and 20170330, respectively. Similar constants in the form

of dates were also used in PlugX backdoor plug-ins.

0x680004 Sends a packet with a random length body (from 0 to 0x1F bytes). The packet

body is filled with 0.

0x680005 Sends an empty packet (header only) and then calls Sleep(1000) 3 times in a

row.

Config

This is a plug-in for working with the configuration.

Command ID Description

0x660000 Sends the current configuration to the server.

0x660001 Receives and applies the new configuration.

0x660002 Deletes the saved configuration file.

Install

Command ID Description

0x670000 Installs the backdoor as a service or installs it in the registry.

0x670001 Calls Sleep(1000) three times in a row, then checks the shellarg.mode

parameter: if its value is 4, it then terminates the current process.

Artifacts

In the historical WHOIS record of the С&С server domain, one can observe the Registrar's email

address: ddggcc@189[.]cn.

The same address is found in the icefirebest[.]com and www[.]arestc[.]net domain records, which

were contained in the configurations of PlugX backdoor samples installed on the same

computer.

Domain Name: ICEFIREBEST.COM

Registry Domain ID: 2042439159_DOMAIN_COM-VRSN

41
41

Registrar WHOIS Server: whois.1api.net

Registrar URL: http://www.1api.net

Updated Date: 2016-07-28T16:55:13Z

Creation Date: 2016-07-13T01:39:31Z

Registrar Registration Expiration Date: 2017-07-13T01:39:31Z

Registrar: 1API GmbH

Registrar IANA ID: 1387

Registrar Abuse Contact Email: abuse@1api.net

Registrar Abuse Contact Phone: +49.68416984x200

Domain Status: ok - http://www.icann.org/epp#OK

Registry Registrant ID:

Registrant Name: edward davis

Registrant Organization: Edward Davis

Registrant Street: Tianhe District Sports West Road 111

Registrant City: HONG KONG

Registrant State/Province: Hongkong

Registrant Postal Code: 510000

Registrant Country: HK

Registrant Phone: +86.2029171680

Registrant Phone Ext:

Registrant Fax: +86.2029171680

Registrant Fax Ext:

Registrant Email: ddggcc@189.cn

Registry Admin ID:

Admin Name: edward davis

Admin Organization: Edward Davis

Admin Street: Tianhe District Sports West Road 111

Admin City: HONG KONG

Admin State/Province: Hongkong

Admin Postal Code: 510000

Admin Country: HK

Admin Phone: +86.2029171680

Admin Phone Ext:

Admin Fax: +86.2029171680

Admin Fax Ext:

42
42

Admin Email: ddggcc@189.cn

Registry Tech ID:

Tech Name: edward davis

Tech Organization: Edward Davis

Tech Street: Tianhe District Sports West Road 111

Tech City: HONG KONG

Tech State/Province: Hongkong

Tech Postal Code: 510000

Tech Country: HK

Tech Phone: +86.2029171680

Tech Phone Ext:

Tech Fax: +86.2029171680

Tech Fax Ext:

Tech Email: ddggcc@189.cn

Name Server: ns1.ispapi.net 194.50.187.134

Name Server: ns2.ispapi.net 194.0.182.1

Name Server: ns3.ispapi.net 193.227.117.124

DNSSEC: unsigned

URL of the ICANN WHOIS Data Problem Reporting System:

http://wdprs[.]internic[.]net/

Domain Name: ARESTC.NET

Registry Domain ID: 2196389400_DOMAIN_NET-VRSN

Registrar WHOIS Server: whois.1api.net

Registrar URL: http://www.1api.net

Updated Date: 2017-12-06T08:43:04Z

Creation Date: 2017-12-06T08:43:04Z

Registrar Registration Expiration Date: 2018-12-06T08:43:04Z

Registrar: 1API GmbH

Registrar IANA ID: 1387

Registrar Abuse Contact Email: abuse@1api.net

Registrar Abuse Contact Phone: +49.68416984x200

Domain Status: ok - http://www.icann.org/epp#OK

Registry Registrant ID:

Registrant Name: li yiyi

Registrant Organization: li yiyi

43
43

Registrant Street: Tianhe District Sports West Road 111

Registrant City: GuangZhou

Registrant State/Province: Guangdong

Registrant Postal Code: 510000

Registrant Country: CN

Registrant Phone: +86.2029179999

Registrant Phone Ext:

Registrant Fax: +86.2029179999

Registrant Fax Ext:

Registrant Email: ddggcc@189.cn

Registry Admin ID:

Admin Name: li yiyi

Admin Organization: li yiyi

Admin Street: Tianhe District Sports West Road 111

Admin City: GuangZhou

Admin State/Province: Guangdong

Admin Postal Code: 510000

Admin Country: CN

Admin Phone: +86.2029179999

Admin Phone Ext:

Admin Fax: +86.2029179999

Admin Fax Ext:

Admin Email: ddggcc@189.cn

Registry Tech ID:

Tech Name: li yiyi

Tech Organization: li yiyi

Tech Street: Tianhe District Sports West Road 111

Tech City: GuangZhou

Tech State/Province: Guangdong

Tech Postal Code: 510000

Tech Country: CN

Tech Phone: +86.2029179999

Tech Phone Ext:

Tech Fax: +86.2029179999

Tech Fax Ext:

44
44

Tech Email: ddggcc@189.cn

Name Server: ns1.ispapi.net 194.50.187.134

Name Server: ns2.ispapi.net 194.0.182.1

Name Server: ns3.ispapi.net 193.227.117.124

DNSSEC: unsigned

URL of the ICANN WHOIS Data Problem Reporting System:

http://wdprs[.]internic[.]net/

BackDoor.ShadowPad.3

It is a multi-module backdoor written in C/C++ and Assembler and designed to run on 32-bit

and 64-bit Microsoft Windows operating systems. It is used in targeted attacks on information

systems for gaining unauthorized access to data and transferring it to C&C servers. Its key

feature is utilizing plug-ins that contain the main backdoor’s functionality. It is a malicious DLL

whose original name—hpqhvsei.dll—is found in the export table. Like

BackDoor.ShadowPad.1, this modification has a lot in common with the malware samples of

the BackDoor.PlugX family.

Operating routine

Export functions are absent. The timestamp from the export table is identical to that from the PE

header.

The first execution steps generally correspond to the BackDoor.ShadowPad.1:

· Decrypting the shellcode and transferring control to it

· The shellcode loads the main Root module, which is stored in a special format

· The Root module loads remaining modules

The exception is that there is no exhaustive search through the handles to find objects whose

names contain TosBtKbd.exe.

The string encryption algorithm is almost identical, but the constants differ:

def decrypt(addr):

 key = get_wide_word(addr)

 result = b""

 i = 2

 b = get_wide_byte(addr + i)

 while i < 0xFFA:

https://vms.drweb.com/search/?q=BackDoor.PlugX&lng=en

45
45

 result += bytes([b ^ (key & 0xFF)])

 key = (((key * 0xDB070000) - ((key
>> 0x10) * 0x390624F9)) - 0x71A4D6B1) & 0xFFFFFFFF

 i += 1

 b = get_wide_byte(addr + i)

 if not result[-1]:

 break

 return result[:-1]

The algorithm for loading additional modules is also similar to BackDoor.ShadowPad.1;

however, there are new modules in this sample. The backdoor has 16 modules in total. A list of

their names with codes and timestamps is provided in the following table:

Module name Code Timestamp

Config 0x66 2019-05-06 08:33:07

Disk 0x12C 2019-05-06 08:29:55

ImpUser 0x6A 2019-05-06 08:33:18

Install 0x67 2019-05-06 08:33:34

KeyLogger 0x132 2019-05-06 08:30:26

Online 0x68 2019-05-06 08:33:13

PIPE 0xCF 2019-05-06 08:29:11

Plugins 0x65 2019-05-06 08:33:02

Process 0x12D 2019-05-06 08:30:00

RecentFiles 0x13D 2019-05-06 08:31:23

Register 0x12F 2019-05-06 08:30:10

Screen 0x133 2019-05-06 08:30:31

Servcie (the original spelling) 0x12E 2019-05-06 08:30:05

Shell 0x130 2019-05-06 08:30:15

46
46

TCP 0xC8 2019-05-06 08:28:45

UDP 0xCA 2019-05-06 08:28:56

For each loadable module a structure is formed that is added to the list that modules can use to

call each other's functions. To work with this list and for other auxiliary tasks, the Root module

exports the function table.

During initialization of the Plugins module, a top-level exception handler is registered. In

BackDoor.ShadowPad.1 this handler generated a string with information about the exception

for debugging purposes. However, in BackDoor.ShadowPad.3 it only terminates the thread

that caused the exception. In this case, the mechanism is similar to BackDoor.PlugX.28.

BackDoor.ShadowPad.3

BackDoor.PlugX.28

https://vms.drweb.com/virus/?lng=en&i=21507745

47
47

The key difference between the functions in this case is that PlugX operates on an object

containing a linked list of all running threads, while ShadowPad directly terminates the current

thread. However, in general, there is an analogue with the ShadowPad object, which stores

loaded modules as a list.

struct all_modules //shadowpad

{

 LIST_ENTRY list;

 DWORD modules_count;

 CRITICAL_SECTION crit_sect;

}

struct obj_threads //plugx

{

 CRITICAL_SECTION crit_sect;

 LIST_ENTRY list;

 DWORD threads_running;

}

The main payload execution starts with the Install module. Similar to

BackDoor.ShadowPad.1, at the beginning of this stage, the backdoor obtains the necessary

privileges. It is worth noting that the first stages of operation are similar to those of the PlugX

backdoors we studied earlier. The illustrations below show a comparison between the

BackDoor.ShadowPad.3 and BackDoor.PlugX.38 algorithms.

https://vms.drweb.com/virus/?lng=en&i=21507830

48
48

BackDoor.ShadowPad.3

49
49

BackDoor.PlugX.38

Then the malware initializes the configuration using the Config module. There is also a similarity

with BackDoor.PlugX at this stage. At the beginning, the backdoor checks the first four bytes of

the buffer where the encrypted configuration should be stored. If the bytes are 0x58585858

(XXXX" in ASCII), then:

· In the BackDoor.ShadowPad.3 an empty configuration is initialized;

· In the BackDoor.ShadowPad.1 a default configuration is initialized.

In BackDoor.PlugX, the first 8 bytes are checked for equality with the string XXXXXXXX.

struct config

{

 WORD off_id;

 WORD offset_1;

 WORD bin_path_offset;

50
50

 WORD svc_name_offset;

 WORD svc_display_name_svc;

 WORD svc_description_off;

 WORD reg_key_install_off;

 WORD reg_value_name_off;

 WORD inject_target_1;

 WORD inject_target_2;

 WORD inject_target_3;

 WORD inject_target_4;

 WORD off_srv_0;

 WORD off_srv_1;

 WORD off_srv_2;

 WORD off_srv_3;

 WORD off_srv_4;

 WORD off_srv_5;

 WORD off_srv_6;

 WORD off_srv_7;

 WORD off_srv_8;

 WORD zero_2A;

 WORD zero_2C;

 WORD zero_2E;

 WORD zero_30;

 WORD zero_32;

 WORD zero_34;

 WORD zero_36;

 WORD off_proxy_1;

 WORD off_proxy_2;

 WORD off_proxy_3;

51
51

 WORD off_proxy_4;

 DWORD DNS_1;

 DWORD DNS_2;

 DWORD DNS_3;

 DWORD DNS_4;

 DWORD timeout_multiplier;

 DWORD field_54;

 WORD port_to_scan;

 WORD scan_by_adapter_flag;

 DWORD ip_addr_1;

 DWORD ip_addr_2;

};

The illustrations below show a comparison between the BackDoor.ShadowPad.3 and

BackDoor.PlugX.28 algorithms.

52
52

BackDoor.ShadowPad.3

BackDoor.PlugX.28

53
53

After initializing the configuration, the backdoor checks the value of mode in the shellarg

structure passed from the module loader. Actions in accordance with the value of mode are

similar to those of BackDoor.ShadowPad.1.

With the mode 5 or mode 6 values, the backdoor searches the list for a module with the code
0x6A (ImpUser) and calls a function from its table. In the

BackDoor.ShadowPad.1 the ImpUser module was missing. This module is used for injecting

into a process that is created either with the environment of the current session, or by a remotely

connected user. In the context of this process, further commands from the C&C server will be

processed, which must be received through a pipe from another running instance of the

backdoor. Thus, the backdoor running with mode 5 or mode 6 acts as a “server” for the pipe

connection, and its second instance relays commands to it from the C&C server. Below is a list of

processes that the backdoor attempts to inject a payload into:

· dllhost.exe

· conhost.exe

· svchost.exe

Similar functionality exists in the PlugX family of backdoors. For example, in

BackDoor.PlugX.38 the named thread DoImpUserProc is responsible for this.

54
54

BackDoor.ShadowPad.3 (decrypting the module name)

55
55

BackDoor.PlugX.38

If the values are mode 7 or mode 8, the backdoor attempts to perform a UAC Bypass using the

DLL hijack of dpx.dll library, loaded by the wusa.exe process (it has the autoElevate

property), and the IFileOperation COM interface. To do this, it extracts its copy—dpx.dll

(1d4a2acc73a7c6c83a2625efa8cc04d1f312325c), which attempts to run the original copy of the

backdoor with elevated privileges.

The patterns of BackDoor.ShadowPad.3, depending on the value of the shellarg.mode

parameter, are similar to the behavior of PlugX. In the shellarg structure of the

BackDoor.PlugX.28 there is a op_mode parameter, which determines the work patterns of

the malware (installation in the system, injection, function interception, etc.).

56
56

Main functionality

BackDoor.ShadowPad.3, similar to BackDoor.ShadowPad.1, can achieve persistence either as

a service or by using the autorun key. The service name, its description, display name, and

registry parameter name are stored in the configuration. Like the PlugX family,

BackDoor.ShadowPad.3 uses mutexes with names that depend on the process ID to

synchronize the restarted program process and the parent process.

BackDoor.ShadowPad.3

BackDoor.PlugX.38

This backdoor also uses a mutex to prevent restarts. The name for the mutex is generated by a

special function of the Config module.

57
57

The same function is also used to generate the name of the file that stores the configuration, the

directory where screen screenshots are stored, and so on. The result of generation depends on

the seed transferred to the function and the serial number of the system volume. A similar

approach to generating unique names was used in BackDoor.PlugX.28:

int __usercall gen_string@<eax>(DWORD seed@<eax>, s *result, LPCWSTR base)

{

 DWORD v3; // edi

 DWORD v4; // eax

 signed int v5; // ecx

 signed int i; // edi

 DWORD v7; // eax

 WCHAR Buffer; // [esp+10h] [ebp-250h]

 __int16 v10; // [esp+16h] [ebp-24Ah]

 __int16 name[34]; // [esp+210h] [ebp-50h]

58
58

 DWORD FileSystemFlags; // [esp+254h] [ebp-Ch]

 DWORD MaximumComponentLength; // [esp+258h] [ebp-8h]

 DWORD serial; // [esp+25Ch] [ebp-4h]

 v3 = a1;

 GetSystemDirectoryW(&Buffer, 0x200u);

 v10 = 0;

 if (GetVolumeInformationW(

 &Buffer,

 &Buffer,

 0x200u,

 &serial,

 &MaximumComponentLength,

 &FileSystemFlags,

 &Buffer,

 0x200u))

 {

 v4 = 0;

 }

 else

 {

 v4 = GetLastError();

 }

 if (v4)

 serial = v3;

 else

 serial ^= v3;

 v5 = (serial & 0xF) + 3;

59
59

 for (i = 0; i < v5; serial = 8 * (v7 - (serial >> 3) + 20140121) - ((v7
- (serial >> 3) + 20140121) >> 7) - 20140121)

 {

 v7 = serial << 7;

 name[i++] = serial % 0x1A + 'a';

 }

 name[v5] = 0;

 string::wcopy(a2, base);

 string::wconcat(a2, (LPCWSTR)name);

 return 0;

}

Before connecting to the C&C server, the backdoor uses a function to generate a string with the

0x434944 seed (CID in ASCII). This string is used as a key name and registry parameter to store

the ID of the infected computer. The ID itself is an array of 8 random bytes. Thus, the backdoor

attempts to save the following structure in the registry at

<HKEY>\Software\<CID_generated>\<CID_generated> (it is also possible to save it in

the HKLM or HKCU sections):

struct id_time

{

 BYTE id[8];

 SYSTEMTIME current_time;

}

It should be noted that the previously analyzed PlugX samples also generate a computer ID

before starting a dialog with the server and save it in the registry. A certain seed is used for

generation.

After creating the ID, the backdoor performs a network scan and starts interacting with the C&C

server. Network scanning is necessary to search for other infected systems on the local network.

To do this, 4 separate threads are started:

1) scanning the range between two IP addresses specified in the backdoor configuration

2) scanning the entire address range for each network adapter found in the system

3) opening the port specified in the configuration

60
60

4) opening the specified port and relaying packets between the local client and the actual C&C

server

Scanning sends a TCP packet containing the unique identifier of the infected computer. The

response is a similar packet. If the IDs do not match, the IP address from which the packet is

received becomes the address of the C&C server for the backdoor. For local communication, the

port used is the one hardcoded in the configuration in the config.port_to_scan parameter.

There are 2 scanning modes available:

· All addressess in the range between the two specified in the configuration are scanned

(config.ip_addr_1 and config.ip_addr_2)

· All subnets available to the infected computer are scanned (searching for network adapters)

A Network Discover (TCP) firewall rule is created to open the listening port for an

incoming connection.

61
61

The rule is created using the FirewallAPI functions of the INetFwMgr COM interface.

To work in server mode the backdoor opens a port from the configuration and waits for an

incoming connection from clients. When a new connection is received, a tunnel is created

between the local client and the actual C&C server. Network communication in scanning and

tunneling mode is performed using the TCP module. The format and structure of the packet are

similar to BackDoor.ShadowPad.1.

62
62

The functionality of the backdoor in server mode in the local network is also present in the

PlugX samples. In particular, in BackDoor.PlugX.38 the JoProc named threads are used for

this purpose:

· JoProcListen (a tunnel between the local client and the C&C server)

· JoProcBroadcast (network broadcasting)

· JoProcBroadcastRecv (processing responses to broadcasted messages)

After initializing the local tunnel, BackDoor.ShadowPad.3 starts to establish the connection to

the C&C server. At the first stage, the backdoor attempts to connect directly to the server

specified in the configuration as a string. If the attempt fails, it retrieves the proxy server settings

from the configuration and attempts to connect to the server using the proxy.

After a successful connection, it sends a packet with 0 to 31 random bytes written in the body.

The response is a command for a plug-in. The commands for Plugins, Config, Install,

and Online are identical to the BackDoor.ShadowPad.1 commands with some exceptions:

· The 0x670001 command for the Install module is used to uninstall the backdoor

· The command format for the Online module is 0x68005X instead of 0x68000X

63
63

Processing commands for modules

ImpUser

Command

ID

Description

0x6A0000 To establish a connection to the pipe designed for relaying data from the C&C

server to the process with injection. After the connection, a tunnel is created

between the C&C server and the process with injection.

0x6A0001 Sends information about all processes injected by the ImpUser.

Disk

Command

ID

Description

0x12C0000 To get a list of letters and types of disks

0x12C0001 To specify the directory; the response is a list of attached files and folders in the

directory (the depth is 1 level). The following data is sent for each item:

· name;

· file attributes

· creation time

· last access time

· time of last recording

· size

0x12C0002 To specify the file name; the backdoor checks whether the file exists

0x12C0003 To create the directory specified in the command

0x12C0004 To get information about the file specified in the command: attributes and time

(when created, last accessed, and recorded)

0x12C0005 To set attributes (file and temporary) for the file specified in the command

0x12C0006 To execute SHFileOperationW with the arguments specified in the command

0x12C0007 To execute CreateProcess with the lpCommandLine argument specified in the

command

64
64

Command

ID

Description

0x12C0008 To read or write a file

0x12C000A To get a list of files by mask in the specified directory (recursively). The mask can

contain the “?” and “*” symbols

0x12C000C To clear the cache by the URL specified in the command

(DeleteUrlCacheEntryW), then download the file from this URL and clear the

cache again

Process

Command

ID

Description

0x12D0000 To obtain a list of processes The following data is gathered for each process:

· PID;

· bitness

· domain

· username

· version of the executable file

· executable file icon data

0x12D0001 To terminate the process; the command specifies the process ID

Servcie

The name of the module with spelling mistake is contained in the code.

Command

ID

Description

0x12F0000 To get a list of all services. The following data is gathered for each service:

· service name

· description

· service display name

· path to the binary file

· value of the ServiceDLL parameter

65
65

Command

ID

Description

0x12F0000 To stop a service

0x12F0000 To delete a service

0x12F0001 To start a service

0x12F0002 To pause a service

0x12F0003 To resume a service

Register

Command

ID

Description

0x12F0000 To get a list of nested keys in the registry key specified by the command

0x12F0001 To create a registry key

0x12F0002 To delete a registry key

0x12F0003 To get a list of parameters and their values in the registry key specified by the

command

0x12F0004 To set the parameter value

0x12F0005 To delete a parameter

Shell

The module contains a single command—0x1300000. This command creates the command

shell cmd.exe with I / O redirection through pipes to the C&C server.

KeyLogger

When initializing the KeyLogger module, a hook of the WH_KEYBOARD_LL type is set.

Keystrokes with window names are recorded in a log file. The file name and path are generated

using the previously specified function.

66
66

Command

ID

Description

0x1320000 To get a log file

0x1320001 To delete a log file

Screen

The Screen module takes a screenshot during initialization and saves it in the directory whose

name and path are generated. The screenshot settings and JPEG encoding parameters are

contained in the configuration file located in the Log subdirectory of the backdoor home

directory.

Command

ID

Description

0x1330000 To get a list of connected displays with the following information:

· name

· description

· screen resolution in pixels (height and width)

0x1330001 To take and send a screenshot to the server

0x1330002 To start a remote desktop service (RDP simulation)

0x1330010 To send a screenshot storage path

0x1330011 To send a file with screenshot parameters to the server

0x1330012 To receive a new file from the server with the settings for screenshots

RecentFiles

The module is designed to work with recent files and has one command—0x13D0000. When

the command is received, the backdoor lists all files with the .lnk extension in %USERPROFILE

%\AppData\Roaming\Microsoft\Windows\Recent and retrieves information for each of

them using the COM interfaces IShellLinkW and IPersistFile.

67
67

68
68

69
69

It is also worth noting that ShadowPad and PlugX use identical encryption algorithms:

BackDoor.ShadowPad

ShadowPad uses this algorithm to encrypt the shellcode, which in turn is used to encrypt plug-ins

and packets.

70
70

BackDoor.PlugX

BackDoor.PlugX.26 uses a similar algorithm to decrypt the shellcode from the file.

BackDoor.ShadowPad.4

A trojan DLL that installs other malware onto computers running 32-bit and 64-bit Microsoft

Windows operating systems. The library is written in C and Assembler.

Operating routine

The TosBtKbd.dll library has the following functions exports:

· SetTosBt

· SetTosBtKbd

· SetTosBtKbdHook

· UnHook

· UnHookTosBt

· UnHookTosBtKbd

The SetTosBt, SetTosBtKbd and SetTosBtKbdHook exports are valid and refer to the main

malicious function of the trojan, while UnHook, UnHookTosBt and UnHookTosBtKbd

represent the dummy exports.

https://vms.drweb.com/virus/?i=21498922&lng=en

71
71

The analyzed sample of the BackDoor.ShadowPad.4 was spread inside the WinRAR SFX

dropper (6ad20dade4717656beed296ecd72e35c3c8e6721), which has the following

components:

· TosBtKbd.exe (a4c6d9eab106e46953f98008f72150e1e86323d6) – legitimate application

used to launch the malicious module TosBtKbd.dll;

· TosBtKbd.dll (13dda1896509d5a27bce1e2b26fef51707c19503) – the described

BackDoor.ShadowPad.4 module;

· TosBtKbdLayer.dll (27e8474286382ff8e2de2c49398179f11936c3c5) – a

BackDoor.Siggen2.3243 trojan module, which is loaded by the TosBtKbd.dll during its

operation.

The launch

TosBtKbd.dll is loaded into the memory using the DLL hijacking technique through the

TosBtKbd.exe application found inside the main dropper. Similar to the

BackDoor.ShadowPad.1 trojan, upon launching, the library goes through the handles looking

for an object with the TosBtKbd.exe name and tries to close it.

Next, it decrypts the shellcode that loads the main malicious module, TosBtKbdLayer.dll,

detected by Dr.Web Anti-Virus as a BackDoor.Siggen2.3243.

The entry point of the loaded module is provided with two values of the code that is transferred

from the loader:

It lacks the function that returns the module name, as well as the name of the functions table

that this module “exports”.

72
72

Similar to the BackDoor.ShadowPad.1 and BackDoor.ShadowPad.3 trojans and some

modifications of the BackDoor.PlugX trojan family, BackDoor.ShadowPad.4 obtains the

SeTcbPrivilege and SeDebugPrivilege system privileges:

Next, the trojan verifies the shellarg.mode value, as well as the provided code values and

corresponding actions. These actions are shown below:

1, 2—creates the process with the session token and injects into it, performing the main

malicious actions;

3—closes the parent process, creates the process with the session token and injects into it,

performing the main malicious actions;

4, 5—performs the main malicious actions;

other values—installs into the system, creates the process with the session token and injects into

it, performing the main malicious actions.

By default, the loader sets the mode 0 value. Therefore, upon initial launch, the trojan will try to

install itself into the system.

https://vms.drweb.com/search/?q=BackDoor.PlugX&lng=en

73
73

The installation

BackDoor.ShadowPad.4 verifies the current date. If it is 01.01.2021 or later, it stops its

execution.

The trojan copies files necessary for its work into the %ALLUSERSPROFILE%\DRM\Toshiba

directory and tries to install itself as a service. If it fails, it registers itself to the autorun, modifying

the [HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run] registry key or

[HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run] if the first attempt was

unsuccessful.

Next, BackDoor.ShadowPad.4 tries to perform an inject. To do so, the trojan creates a

dllhost.exe process with the CREATE_SUSPENDED flag and tries to inject a shellcode,

responsible for malicious module loading, into it. It also tries to inject the module itself, using

the strVirtualAllocEx -> WriteProcessMemory -> CreateRemoteThread

scheme. To create a process, the following command line is used:

%SystemRoot%\system32\dllhost.exe /Processid:{D54EEE56-AAAB-11D0-9E1D-
00A0C922E6EC}

If the injection was successful, the current process is terminated. Otherwise, the trojan tries to

perform the inject into the created process, using the current session token.

When it runs in the context of a new process, BackDoor.ShadowPad.4 uses mutex to locate the

parent process and terminates it. The name of the mutex is generated with the following

function:

Next, the trojan tries to inject its main module into the wmplayer.exe process created with the

environment, obtained with the duplicate of the current session token. If it successful, it

terminates the current process; if failed, it proceeds to its main functionality.

When it runs in the context of wmplayer.exe, BackDoor.ShadowPad.4 proceeds to its main

functionality immediately. Thus, it loads the TosBtKbdLayer.dll library into the memory and

sends the ID of the infected computer to the С&C server.

74
74

The main malicious functionality

Using the LoadLibrary function, BackDoor.ShadowPad.4 loads the TosBtKbdLayer.dll

library into the memory. It then generates the sequence of 16 random bytes that represents the

ID of the infected computer. If it has administrator rights, the trojan saves this ID in the ID1

parameter of the [HKLM\SOFTWARE\WAD] registry key. If it doesn’t have the appropriate rights,

it saves it in the parameter of the [HKCU\SOFTWARE\WAD] registry key.

After that, BackDoor.ShadowPad.4 creates the UDP socket and binds to it, but doesn’t call the

listen function for it to listen to the connection. After that, it generates the

winhook\tdzkd\t<id>\t<computer_name> string, where:

· <id> is the generated ID of the infected computer in the form of a hex string;

· <computer_name> is the name of the computer;

· \t is the tabulation symbol (0x09);

· winhook and dzkd are the strings hardcoded in the trojan’s code.

The resulted string is encrypted and sent to the C&C server located at the 125.65.40.163:

The string generation and its upload to the C&C server is repeated once every hour.

75
75

Compared to other modifications of the family, all the necessary parameters of

BackDoor.ShadowPad.4, such as the names of registry keys, services and the C&C server

address, are stored in the body of the trojan as separate strings. The encryption algorithm for

these strings is similar to the one used in BackDoor.ShadowPad.3. The code of this algorithm is

modified, but the result of its execution for both malicious apps is the same:

Strings encryption algorithm in BackDoor.ShadowPad.3

76
76

Strings encryption algorithm in BackDoor.ShadowPad.4

77
77

BackDoor.Farfli.122

A trojan library written in C++. It represents a dropper designed to deliver other malware to

computers running 32-bit and 64-bit Microsoft Windows operating systems. The analyzed

sample is used to load the main malicious module, hidden in the encrypted file, into the

memory.

78
78

Operating routine

The library loads to the memory by the RasTls.exe tool using the DLL-hijacking mechanism.

Next, it decrypts the shellcode from the RasTls.dat file stored in its body and transfers

control to it:

In turn, this shellcode uses an XOR operation with the 0xCC byte to decrypt the main payload

(Dr.Web detects it as BackDoor.Farfli.125) and loads it into the memory. After that, it changes

the strings MZ and PE to BB and CC, respectively, in the signature header of an executable file.

BackDoor.Farfli.125

A malicious .DLL installed on targeted computers by the BackDoor.Farfli.122 trojan. It is written

in C++ and supports 32-bit and 64-bit Microsoft Windows operating systems. This library

represents a backdoor that receives commands from attackers and allows them to remotely

control the infected computers.

Operating routine

The library is loaded into the memory by BackDoor.Farfli.122. It exports the mystart function

that contains the main malicious functionality. This library has a PcMain.exe name in the

exporting table.

79
79

mystart function

Upon receiving control from the shellcode loaded by BackDoor.Farfli.122, BackDoor.Farfli.125

performs various checkups. At the beginning, the trojan determines if it has been launched

through the Wow64 subsystem and runs in the 64-bit environment. With that, if the

IsWow64Process function execution returns an error, it displays a MessageBox with the x1

text. Next, BackDoor.Farfli.125 checks whenever the module file name has \explorer.exe or
\internet explorer\iexplore.exe</

If the backdoor runs in the context of the explorer.exe or IE process, it creates a hidden

directory C:\Microsoft\TEMP\Networks\Connections\Pbksn. Next, it verifies the

module file name has a nvdiassnx string and tries to create a nvdiassnx folder in the

directory it created earlier. If the trojan does not run from the nvdiassnx folder, it creates a file

with the RasTls<rnd>.exe name, where <rnd> represents a result of the GetTickCount

function execution in the %08x format.

If the backdoor does not run in the context of the explorer.exe or IE process, it creates a C:

\Microsoft\TEMP\Networks\Connections\Pbksn\nvdiassnx\ky3log.dat file.

Anchoring in the system

Upon completing the initial preparation, the trojan checks if it runs in the context of the

explorer.exe or iexplore.exe process and if it was launched from the ...\nvdiassnx

directory.

· Operation in the context of the explore.exe or iexplore.exe process

If it runs in the context of the explorer.exe or iexplore.exe process, BackDoor.Farfli.125

immediately proceeds to its main malicious functionality. Otherwise, it verifies if it runs from the

...\nvdiassnx.

· Operation from the nvdiassnx directory

If the trojan was not launched from the ...\\nvdiassnx directory, it checks if the Global\

\vssafuyuhdw332kjgtts1 event is present. If it exists, it terminates its process to ensure

only one copy of the trojan is launched. Otherwise, the trojan moves its components—

RasTls.exe, RasTls.dll and RasTls.dat—to the C:

\Microsoft\TEMP\Networks\Connections\Pbksn\nvdiassnx directory.

Its further actions depend on the operating system version.

If BackDoor.Farfli.125 is running on Windows Vista and later Windows versions, the RasTls.exe

module is set to autorun through the
[HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce] registry

80
80

key. Next, the trojan launches the iexplore.exe process with the

CREATE_SUSPENDED flag, reads the shellcode from the RasTls.dat file, decrypts and injects it

into the iexplore.exe process, launched earlier, continuously using the VirtualAllocEx,

WriteProcessMemory and ResumeThread functions. Herewith, it patches the entry point of

the process so the injected shellcode will receive control.

If BackDoor.Farfli.125 is running on a Windows version below Windows Vista and not through

the Wow64 subsystem, the trojan performs the same actions but injects the shellcode into the

explorer.exe process.

If the trojan is launched from the ...\\nvdiassnx directory, it performs the same actions

described earlier, excluding the Global\\vssafuyuhdw332kjgtts1 event check and moving

files.

Main functionality

BackDoor.Farfli.125 creates a Global\\vssafuyuhdw332kjgtts1 event and receives the

addresses of the API functions it needs. To do so, it searches for the signature of two

consecutive DWORD 0x8776633 and 0x18776655, starting from the trojan module base. This

signature is located at the beginning of the last section of the module itself. With that, the

section is nameless and contains various service strings, including the API functions names, as

well as a compressed trojan configuration.

81
81

The section contains three blocks of compressed data. The first block has the strings, the second

block has the trojan configuration, and the third block remains empty. Herewith, the second and

third blocks are located at the end of the section:

After the decompression, the second block represents a list of numbered strings listed below:

PS_10001=ole32.dll

PS_10002=CoCreateGuid

PS_10003=Shlwapi.dll

PS_10004=SHDeleteKeyA

PS_10005=wininet.dll

PS_10006=InternetOpenA

PS_10007=InternetOpenUrlA

PS_10008=InternetCloseHandle

PS_10009=HttpQueryInfoA

PS_10010=InternetReadFile

PS_10011=IMM32.dll

PS_10012=ImmReleaseContext

PS_10013=ImmGetCompositionStringW

PS_10014=ImmGetCompositionStringA

PS_10015=ImmGetContext

PS_10016=ADVAPI32.dll

PS_10017=GetUserNameW

PS_10018=RegCloseKey

PS_10019=RegOpenKeyExA

PS_10020=RegCreateKeyExA

82
82

PS_10021=RegSetValueExA

PS_10022=RegDeleteValueA

PS_10023=AdjustTokenPrivileges

PS_10024=LookupPrivilegeValueA

PS_10025=OpenProcessToken

PS_10026=StartServiceA

PS_10027=CloseServiceHandle

PS_10028=OpenServiceA

PS_10029=OpenSCManagerA

PS_10030=CreateServiceA

PS_10031=DeleteService

PS_10032=RegisterServiceCtrlHandlerA

PS_10033=SetServiceStatus

PS_10034=Shell32.dll

PS_10035=ShellExecuteExW

PS_10036=ShellExecuteA

PS_10037=User32.dll

PS_10038=PostThreadMessageA

PS_10039=wsprintfW

PS_10040=CharLowerA

PS_10041=GetMessageA

PS_10042=PostMessageA

PS_10043=CallNextHookEx

PS_10044=GetForegroundWindow

PS_10045=GetWindowTextA

PS_10046=GetWindowThreadProcessId

PS_10047=GetActiveWindow

PS_10048=UnhookWindowsHookEx

PS_10049=SetWindowsHookExW

PS_10050=SetThreadDesktop

PS_10051=OpenDesktopA

PS_10052=GetThreadDesktop

PS_10053=Kernel32.dll

PS_10054=GetModuleHandleA

PS_10055=DeviceIoControl

83
83

PS_10056=CreateMutexA

PS_10057=OpenMutexA

PS_10058=ReleaseMutex

PS_10059=CreateEventA

PS_10060=OpenEventA

PS_10061=SetEvent

PS_10062=WaitForSingleObject

PS_10063=GetLocalTime

PS_10064=GetTickCount

PS_10065=lstrcpyW

PS_10066=lstrcatW

PS_10067=lstrlenW

PS_10068=lstrcmpW

PS_10069=CreateThread

PS_10070=GetSystemDirectoryA

PS_10071=GetCurrentProcess

PS_10072=OpenProcess

PS_10073=MultiByteToWideChar

PS_10074=WideCharToMultiByte

PS_10075=Sleep

PS_10076=CreateFileA

PS_10077=DeleteFileA

PS_10078=WriteFile

PS_10079=ReadFile

PS_10080=CopyFileA

PS_10081=SetFilePointer

PS_10082=CloseHandle

PS_10083=GetModuleFileNameA

PS_10084=GetVersionExA

PS_10085=GetVersion

PS_10086=GetCurrentThreadId

PS_10087=GetFileSize

PS_10088=GetTempPathA

PS_10089=Psapi.dll

PS_10090=GetModuleFileNameExA

84
84

PS_10091=EnumProcesses

PS_10092=strstr

PS_10093=strchr

PS_10094=strcat

PS_10095=atoi

PS_10096=srand

PS_10097=rand

PS_10098=time

PS_10099=strrchr

PS_10100=strlen

PS_10101=strcpy

PS_10102=strcmp

PS_10103=memset

PS_10104=MSVCRT.dll

PS_10105=sprintf

PS_10106=memcmp

PS_10107=memcpy

PS_10108=GetLogicalDriveStringsA

PS_10109=CreateDirectoryA

PS_10110=MoveFileA

PS_10111=GetVolumeInformationA

PS_10112=FindNextFileA

PS_10113=FindFirstFileA

PS_10114=FindClose

PS_10115=GetDriveTypeA

PS_10116=GetFileAttributesExA

PS_10117=GetLastError

PS_10118=SHFileOperationA

PS_10119=GetCurrentProcessId

PS_10120=OpenInputDesktop

PS_10121=CreateToolhelp32Snapshot

PS_10122=Process32First

PS_10123=Process32Next

PS_10124=RegEnumValueA

PS_10125=EnumWindows

85
85

PS_10126=RegEnumKeyExA

PS_10127=ControlService

PS_10128=TerminateProcess

PS_10129=ShowWindow

PS_10130=BringWindowToTop

PS_10131=UpdateWindow

PS_10132=MessageBoxA

PS_10133=Winmm.dll

PS_10134=waveInOpen

PS_10135=waveInClose

PS_10136=waveInPrepareHeader

PS_10137=waveInUnprepareHeader

PS_10138=waveInAddBuffer

PS_10139=waveInStart

PS_10140=waveInStop

PS_10141=GetFileSizeEx

PS_10142=SetFilePointerEx

PS_10143=RegQueryValueExA

PS_10144=GetStdHandle

PS_10145=CreatePipe

PS_10146=SetStdHandle

PS_10147=DuplicateHandle

PS_10148=CreateProcessA

PS_10149=GlobalFree

PS_10150=GlobalAlloc

PS_10151=GlobalLock

PS_10152=ResetEvent

PS_10153=Gdiplus.dll

PS_10154=GdiplusStartup

PS_10155=Ole32.dll

PS_10156=CreateStreamOnHGlobal

PS_10157=CoInitializeEx

PS_10158=OpenWindowStationA

PS_10159=SetProcessWindowStation

PS_10160=ExitProcess

86
86

PS_10161=Wtsapi32.dll

PS_10162=WTSSendMessageA

PS_10163=WTSQueryUserToken

PS_10164=WTSGetActiveConsoleSessionId

PS_10165=DuplicateTokenEx

PS_10166=Userenv.dll

PS_10167=CreateEnvironmentBlock

PS_10168=DestroyEnvironmentBlock

PS_10169=ExitWindowsEx

PS_10170=CreateProcessAsUserA

PS_10171=ImpersonateSelf

PS_10172=OpenThreadToken

PS_10173=GetComputerNameA

PS_10174=GlobalMemoryStatusEx

PS_10175=GetSystemInfo

PS_10176=GetACP

PS_10177=GetOEMCP

PS_10178=Gdi32.dll

PS_10179=DeleteDC

PS_10180=CreateDCA

PS_10181=DeleteObject

PS_10182=BitBlt

PS_10183=CreateCompatibleDC

PS_10184=SelectObject

PS_10185=GetDeviceCaps

PS_10186=GetDIBits

PS_10187=CreateCompatibleBitmap

PS_10188=SetThreadAffinityMask

PS_10189=SetCursorPos

PS_10190=SendInput

PS_10191=ChangeServiceConfigA

PS_10192=EnumServicesStatusA

PS_10193=QueryServiceConfigA

PS_10194=GetCurrentThread

PS_10195=GetDiskFreeSpaceExA

87
87

PS_10196=GetEnvironmentVariableA

PS_10197=%08x.exe

PS_10198=ServiceMain

PS_10199=%s.dll

PS_10200=TWO

PS_10201=runas

PS_10202=%scom.exe

PS_10203=http://%s

PS_10204=%08x.txt

PS_10205=200

PS_10206=\svchost.exe -k

PS_10207=%SystemRoot%\System32

PS_10208=%ProgramFiles%\Common Files\Microsoft Shared

PS_10209=\Services\

PS_10210=ControlSet003

PS_10211=ControlSet002

PS_10212=ControlSet001

PS_10213=CurrentControlSet

PS_10214=SYSTEM\

PS_10215=%s%s%s%s\Parameters

PS_10216=%s%s%s%s

PS_10217=SeDebugPrivilege

PS_10218=ravmond.exe

PS_10219=rstray.exe

PS_10220=360tray.exe

PS_10221=ServiceDll

PS_10222=Start

PS_10223=Description

PS_10224=SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost

PS_10225=Windows Registry Editor Version 5.00

PS_10226=[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Messenger\
Parameters]

PS_10227="ServiceDll"=hex(2):

PS_10228=%02x,00,

PS_10229=00,00

PS_10230=SOFTWARE\Microsoft\Windows\CurrentVersion\Run

88
88

PS_10231=rundll32.exe "%s",ServiceMain

PS_10232=ATI

PS_10233=ctr.dll

PS_10234=msgsvc.dll

PS_10235="%s",%s

PS_10236=rundll32.exe

PS_10237=%SystemRoot%\System32\

PS_10238=%ProgramFiles%\Common Files\Microsoft Shared\

PS_10239=%sreg.reg

PS_10240=%sreg.dll

PS_10241=SystemRoot

PS_10242=%s\System32\%s.dll

PS_10243=CommonProgramFiles

PS_10244=%s\Microsoft Shared\%s.dll

PS_10245=.upa

PS_10246=svchost.exe

PS_10247=-s "%s"

PS_10248=regedit.exe

PS_10249=%scpy.dll

PS_10250=CurrectUser:

PS_10251=Password:

PS_10252=[%04d-%02d-%02d %02d:%02d:%02d]

PS_10253=%s %s %s

PS_10254=***System Account And Password[%04d-%02d-%02d %02d:%02d:%
02d]***

PS_10255=.txt

PS_10256=Default

PS_10257=Winlogon

PS_10258=%SystemRoot%\System32\msgsvc.dll

PS_10259=HARDWARE\DESCRIPTION\System\CentralProcessor\0

PS_10260=~MHz

PS_10261=SYSTEM\ControlSet001\Services\%s

PS_10262=rundll32.exe "%s",%s ServerAddr=%s;ServerPort=%d;Hwnd=%
d;Cmd=%d;DdnsUrl=%s;

PS_10263=ServerAddr

PS_10264=ServerPort

89
89

PS_10265=Hwnd

PS_10266=Cmd

PS_10267=DdnsUrl

PS_10268=Default IME

PS_10269=iexplore.exe

PS_10270=SeShutdownPrivilege

PS_10271=WinSta0

PS_10272=Warning

PS_10273=Action

PS_10274=Error

PS_10275=DISPLAY

PS_10276=image/jpeg

PS_10277=NULL renderer

PS_10278=Grabber

PS_10279=FriendlyName

PS_10280=Cap

PS_10281=\%ssck.ini

PS_10282=\%skey.dll

PS_10283=\%skey.txt

PS_10284=%skey

PS_10285=%08x%s

PS_10286=%s\

PS_10287=%s*.*

PS_10288=%s\%s

PS_10289=CMD.EXE

PS_10290=%s=

PS_10291=[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Messenger]

PS_10292="Start"=dword:00000002

PS_10293="Start"=dword:00000004

PS_10294=Messenger

PS_10309=\%s.dll

PS_10310=360safe.exe

PS_10311=\%sctr.dll

PS_10312=tmp.dll

PS_10313=ChangeServiceConfig2A

90
90

PS_10314=QueryServiceConfig2A

PS_10315=ServiceName

The trojan keeps the unpacked block with the strings in its memory and extracts these strings

whenever it needs them, according to their specific numbers.

BackDoor.Farfli.125 consecutively loads all the required libraries, receives the addresses of

necessary functions, and saves them inside the global structure through which it will call them.

The code fragment, executing this routine, is shown on the next image:

91
91

After the necessary APIs are loaded, it finds the structure of the last section and unpacks the

second block, which contains the configuration of the backdoor. This configuration contains the

C&C address and various parameters. The structure of the BackDoor.Farfli.125 is as follows:

struct config

{

DWORD dword_0;

DWORD dword_1;

DWORD copy_to_temp;

DWORD port;

DWORD timeout;

DWORD delete_files;

DWORD start_keylogger;

DWORD cfg_dword;

DWORD dword_2;

DWORD dword_3;

BYTE srv_addr[256];

BYTE url[256];

BYTE unk_str[64];

BYTE gap_0[24];

BYTE name[312];

BYTE str_version32];

BYTE str_group[32];

BYTE password[32];

DWORD service;

DWORD dword_4;

GUID created_GUID;

BYTE gap_1[260];

};

92
92

Next, BackDoor.Farfli.125 verifies the config.copy_to_temp flag. If its value is not 0, the

trojan copies the .exe file from which it is running into the %TEMP% directory as a file with the

<config.name>com.exe name pattern and launches it through the ShellExecuteA

function. In the analyzed sample, the kfwktt is used for config.name in the file name.

BackDoor.Farfli.125 uses the current executable module name as an argument for the

command line.

After that, the trojan verifies the config.delete_files flag. If its value is not 0, the backdoor tries

to read the %TEMP%\install00.tmp file and deletes the file whose name is stored in

install00.tmp. Next, it deletes the install00.tmp, thumbs.db, rapi.dll and

rapiexe.exe files.

BackDoor.Farfli.125 creates a C&C server connection object, initializes the Windows Sockets

API, but does not establish the connection itself. Next, using the SetProcessWindowStation

function, the trojan associates itself with WinSta0 and binds the thread to the Default

desktop though the SetThreadDesktop function.

If the backdoor finds a config.start_keylogger flag, it initializes a keylogger. Upon its

initialization, the mutex is created. Its name consists of two combined names of the module

without a file extension:

<module_name><module_name>

Next, an event with the <module_name> name is created. The name for the log file is formed as

follows:

%TEMP%\<module_name>.txt.

To intercept the keystrokes, the window KBDLoger with the KBDLoger class name is created.

With that, the interception is performed, using the RegisterRawInputDevices and

GetRawInputData functions. The keylogger log file entries are encrypted with the XOR

operation and the 0x62 byte.

BackDoor.Farfli.125 tries to read the <config.name>sck.ini file, which is supposed to

contain the configuration for the trojan to operate as a SOCKS proxy server. This configuration

contains the port number to which the proxy server binding is performed, as well as the name

and the password for the authentication. The backdoor supports the SOCKS4 and SOCKS5

modes with capabilities to authenticate using the name and password and is able to resolve the

domain names.

The operation in the SOCKS proxy server mode is performed in a separate thread. If the

configuration file is missing, the trojan skips the proxy server creation stage.

C&C communication

The name of the С&C server is stored in config.srv_addr as a string. Moreover,

config.url can store a URL, which the trojan uses to request a new address through the

93
93

WinHTTP API. In this case, the response comes as a C&C server address string, which can also

contain the port number, followed by :. The received address is saved in the %TEMP%

\<threadid>.txt file, where <threadid> is the identificator of the current thread in the %

08x format. Subsequently, the trojan reads the C&C server address from this file and applies it

to its configuration.

BackDoor.Farfli.125 establishes a keep-alive connection through the TCP socket and generates

the encryption key, using the XOR operation with one byte. Next, it extracts the

config.password string from the configuration and forms a key in the size of 1 byte from it,

using the following algorithm:

 key = 0

i = 0

for x in password:

 k = k ^ ((x << i) & 0xFF)

 i += 1

The config.password string in the analyzed sample is empty, so the data sent to the C&C

server remains unencrypted.

BackDoor.Farfli.125 collects the following information about the system:

· OS version

· CPU frequency

· the number of processors

· the amount of RAM

· the name of the computer

· code pages for the ANSI and OEM

Next, based on the collected information, it prepares the structure as follows:

struct sysinfo

{

DWORD id;

DWORD dword_zero_0;

DWORD dword_zero_1;

DWORD dword_zero_2;

94
94

DWORD CPU_MHz;

DWORD dword_zero_3;

LARGE_INTEGER phys_mem;

DWORD ansi_CP;

DWORD oem_CP;

DWORD dword_0;

DWORD OS_version;

DWORD number_of_processors;

DWORD cfg_dword;

GUID created_GUID;

DWORD gap_0[5];

BYTE unk_str[128];

BYTE computer_name[16];

DWORD gap_1[28];

BYTE str_group[64];

BYTE str_version[32];

DWORD pad[9];

};

id

When sending the first packet to the C&C server, the id field has a 0x1F40 value. When

sending further packets, this field contains the command ID.

dword_0

The dword_0 field equals 1 if the id value corresponds to the 0x1F40; in other cases (i.e. if this

is the first packet) it equals 0.

cfg_dword

The cfg_dword field equals the config.cfg_dword value.

95
95

OS_version

Depending on the version of the attacked operating system, the OS_version field can take the

following values:

· 0—for Windows with the build number of 8XXXX and higher

· 1—for Windows 95

· 2—for Windows 2000

· 3—for Windows XP

· 4—for Windows Server 2003

· 5—for Windows Vista, Windows Server 2008

· 6—for Windows 7, Windows Server 2008 R2

· 7—for Windows 8, Windows Server 2012

· 8—for Windows 8.1 and higher

created_GUID

The created_GUID field is generated through the CoCreateGuid function each time the

structure is sent to the C&C server. It is also saved in config.created_GUID.

unk_str

The unk_str string is copied from the config.unk_str. In the analyzed sample, this string is

empty.

str_group

The str_group string is copied from config.str_group. In the analyzed sample, it has a

value of General Group.

str_version

The str_version string is copied from the config.str_version. In the analyzed sample, it

has a value of Customized Version.

After the structure is formed, it is encrypted with a one-byte XOR operation if there is a key and

sent to the C&C server. If sending has failed, the thread goes to sleep for config.timeout

milliseconds and tries to send the packet again. This routine is repeated until the structure is

successfully sent.

96
96

If sending was successful, BackDoor.Farfli.125 receives a block, consisting of two DWORD in

return. The first DWORD is the command ID, while the second DWORD is used in the reply to

the command the trojan sends to the C&C server.

The operation with the commands

When responding to each command, the backdoor first verifies the packet with the sysinfo

data, where the id field holds the ID of the received command, and the cfg_dword field

represents the second DWORD received with this command.

There are two groups of commands BackDoor.Farfli.125 works with:

· the main commands

· the secondary commands; the backdoor starts to work with them upon receiving the

commands with the 0x1F42, 0x1F43, 0x1F44[/strong], 0x1F4E and 0x1F54 IDs

The main commands

Command

ID

Performed actions

0x7535 To obtain a SeShutdownPrivilege privilege and shut down the system with the

SHTDN_REASON_MINOR_RECONFIG code.

0x7534 To obtain a SeShutdownPrivilege privilege and reboot the system with the

SHTDN_REASON_MINOR_RECONFIG code.

0x7532 To load a .DLL into the memory, call the ServiceMain function from it and delete

the library. Due to possible error in the code, instead of the .DLL file, the trojan tries

to load a text file with the keylogger log.

If the .DLL was successfully loaded, the backdoor checks the value of the

config.service parameter. This value can be as follows:

· 1—the trojan deletes the ATI value in the

[HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run] key

· 2—the trojan forms the file %TEMP%\<config.name>reg.reg and imports it

into the Windows registry

· other value—the trojan deletes the <config.name> value from the

[HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost] key

The reg.reg file formed by the backdoor has the following contents:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Messenger]

97
97

"Start"=dword:00000004

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Services\Messenger]

"Start"=dword:00000004

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet003\Services\Messenger]

"Start"=dword:00000004

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Messenger\Pa
rameters]

"ServiceDll"=hex(2):25,00,53,00,79,00,73,00,74,00,65,00,6d,00,
52,00,6f,00,6f,00,74,00,25,00,5c,00,53,00,79,00,73,00,74,00,65
,00,6d,00,33,00,32,00,5c,00,6d,00,73,00,67,00,73,00,76,00,63,0
0,2e,00,64,00,6c,00,6c,00,00,00

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Services\Messenger\Pa
rameters]

"ServiceDll"=hex(2):25,00,53,00,79,00,73,00,74,00,65,00,6d,00,
52,00,6f,00,6f,00,74,00,25,00,5c,00,53,00,79,00,73,00,74,00,65
,00,6d,00,33,00,32,00,5c,00,6d,00,73,00,67,00,73,00,76,00,63,0
0,2e,00,64,00,6c,00,6c,00,00,00

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet003\Services\Messenger\Pa
rameters]

"ServiceDll"=hex(2):25,00,53,00,79,00,73,00,74,00,65,00,6d,00,
52,00,6f,00,6f,00,74,00,25,00,5c,00,53,00,79,00,7

Where the ServiceDll name in it corresponds to the %SystemRoot%

\System32\msgsvc.dll\ path.

0x22B8 To delete the keylogger log file.

0x1F5A To shut down the SOCKS proxy server and delete the configuration file.

0x1F59 To send the keylogger log file to the C&C server. The contents of the file are

packed with the same algorithm as the data in the last section and sent in 3 stages:

1. the size of the packed data is sent

2. the second DWORD from the command is sent

3. the data itself is sent

0x1F58 To receive a file name from the C&C server and then a buffer with the data. To

open the specified file and write a received buffer into its end.

0x1F57 To record a sound through the microphone into the WAV file and send it as blocks

to the C&C server.

98
98

0x1F56 To take a screenshot of the desktop and send it to the C&C server as a jpeg file.

0x1F52 To run a SOCKS proxy server. First, the trojan receives a configuration file, then

binds a proxy server to a port specified in the configuration and starts to process

the incoming connections.

0x1F51 To launch Internet Explorer with the command line arguments sent in the

command.

0x1F50 To demonstrate MessageBox with the specified parameters.

0x1F4B To receive a file from the C&C server, save it in %TEMP%\<threadid>.<ext> and

run it using the ShellExecute function. A file extension and nShowCmd parameter

are also sent in the command.

0x1F4A To receive a URL from the C&C server from which a file will be downloaded. The

trojan saves the file in %TEMP% and runs it.

0x1F49 To receive an executable module from the C&C server. In this module, the trojan

searches for signatures similar to the one located in its last section. After this

signature, it places the config.created_GUID value. Next, it saves a file in %TEMP

%\<threadid>.exe and creates a process from it.

After the process is successfully created, it performs the same actions as upon

receiving the 0x7532 command.

0x1F48 To send a specified file to the C&C server.

0x1F47 A remote control using cmd.exe. The trojan redirects I/O to the pipes, receives the

commands from the C&C server, sends them into the pipe set as hStdInput for

cmd.exe, reads the results from the pipe set as hStdOutput. The results are

compressed before being sent and the received commands are also compressed.

0x1F41 An RDP protocol imitation. The trojan takes desktop screenshots, sends them to the

C&C server as .jpeg files and receives the input commands in response.

The secondary commands

BackDoor.Farfli.125 sends the sysinfo structure to the C&C server with the 0x1F42 ID after it

receives one of the following commands: 0x1F42, 0x1F43, 0x1F44, 0x1F4E, or 0x1F54. In

response, the server sends a compressed block with the additional command’s ID and other

data.

The result of the command execution is written into the %TEMP%\<threadid>.tmp

temporary file first, where threadid is the ID of the current thread in the %08x

format. Next, the file is read and its contents are packed and sent to the C&C server.

99
99

Command

ID

Performed actions

0x1771 To collect the information about the disk the path to which is specified in the

command. The data is sent to the C&C server in the form of the structure shown

below:

struct disk_info

{

DWORD type;

DWORD dword_0;

LARGE_INTEGER free_bytes_available_to_caller;

LARGE_INTEGER total_number_of_bytes;

LARGE_INTEGER total_number_of_free_bytes;

BYTE volume_name[128];

DWORD gap_0[32];

BYTE file_system_name[128];

DWORD gap_1[32];

BYTE path[64];s

};

0x1772 To receive the information about properties of the file specified in the command.

The result of the command’s execution is saved as the following structure:

struct file_info

{

WIN32_FILE_ATTRIBUTE_DATA attrs; //WINAPI struct

char filename[512];

};

0x1773 To receive the following information about a specified directory:

· the properties of the directory

· the number of files and subdirectories in it

100
100

· the total amount of the data stored in it

The command is executed recursively. The received information is saved as the

following structure:

struct dir_info

{

WIN32_FILE_ATTRIBUTE_DATA attrs;

DWORD number_of_files;

DWORD number_of_subdirs;

DWORD dword_0;

LARGE_INTEGER total_dir_size;

BYTE path[512];

};

0x1774 To write a list of the files and subdirectories in the specified directory to the

temporary file. The list represents a sequence of the file_info structures for each

element.

0x1775 To delete files listed in the command.

0x1776 To create a directory.

0x1777 To move a file. The current and new file name are set as two consequent buffers of

the size of 0x200 bytes.

0x1778 To list all available disks, forming a disk_info structure with the corresponding

information for each of them. The collected data is sent to the C&C server in a

response message.

0x1779 To open a specified file, calling the ShellExecuteA function with the nCmdShow

parameter, which equals SW_SHOW.

0x177A To obtain a SE_DEBUG_PRIVILEGE privilege and terminate a process. The

command contains the PID of the targeted process in a text format.

101
101

0x177B To list the contents of the registry key. For each element of the key the following

structure is formed:

struct reg_key_item

{

DWORD ValueName_len;

DWORD type;

DWORD data_size;

DWORD is_subkey;

BYTE element_name[512];

BYTE data[512];

};

0x177C To delete a specified registry key.

0x177E To delete a parameter in the registry key.

0x177F To set a parameter value in the registry key.

0x1781 This command contains the list of paths to files and folders (one or more paths). If

the path received in the command leads to the file, the trojan writes its name and

size into the temporary file. If the path leads to the directory, the trojan recursively

goes through it and for each file found in it, it writes its name and size into the

temporary file.

0x1782 To create the list of active processes. For each process the following structure is

formed:

struct proc_info

{

DWORD pid;

DWORD threads_base_priority;

DWORD number_of_threads;

BYTE exe_file[512];

};

102
102

The collected information is sent to the C&C server.

0x1783 To create a list of running services of the SERVICE_WIN32 type. For each service

the following structure is formed:

struct service_info

{

DWORD service_type;

DWORD start_type;

DWORD error_control;

DWORD tagID;

BYTE service_name[520];

BYTE display_name[520];

DWORD current_state;

DWORD gap_0[9];

BYTE binary_path_name[512];

BYTE load_order_group[512];

BYTE dependencies[512];

BYTE service_start_name[1024];

BYTE description[1024];

};

0x1784 To stop or launch a service. The command contains the buffer with the size of

0x200 with the service name, followed by a code.

If the code is 1, the trojan needs to stop the service; if the code is 0, it needs to

launch it.

0x1785 The command is responsible for the service configuration control. The trojan can

change the type of the launch, the name, and the displayed name of the service.

0x1787 To delete a service.

0x1788 To search files, using the mask. The trojan saves the list of files with their properties

in the temporary file.

103
103

0x1789 To list opened windows. For each window the trojan forms the following structure:

struct window_info

{

BYTE text[512];

BYTE owner_process_name[512];

HWND hWnd;

DWORD dword;

}

0x178A To close or show a window. The command contains a handle of the window, the

code of the message, and the nCmdShow parameter.

BackDoor.Siggen2.3243

BackDoor.Siggen2.3243 is a malicious DLL module written in C++ and designed for 32-bit and

64-bit Microsoft Windows operating systems. Its functionality includes a keylogger, snooping

on clipboard contents, extracting saved logins and passwords, obtaining information about

installed applications and collecting general information about the infected system.

Operating routine

BackDoor.Siggen2.3243 is statically linked with several libraries, such as OpenSSL, SQLite, gloox

XMPP client library, CJsonObject JSON parser and STL.

The trojan is loaded into the memory by BackDoor.ShadowPad.4 through the LoadLibrary

function. At the beginning, it creates the [Guid("71ED330D-F80C-499A-A442-

744EAD224A8F")] mutex. Next, in the current directory it creates a log file whose name is

calculated as an MD5 hash of the winhook-clientLog string, which is

eb3816e69e6c007b96a09e2ecee968e5. After that, the trojan writes the strings in this file as

follows:

Info [YYYY-MM-DD HH:MM:SS]Log::setLogPath
success,<eb3816e69e6c007b96a09e2ecee968e5,a>

Info [YYYY-MM-DD HH:MM:SS]..Start.. 0.0.9a

https://camaya.net/gloox/
https://github.com/Bwar/CJsonObject

104
104

When running, BackDoor.Siggen2.3243 saves the information about every operation it

performs, including information about the errors:

With that, the error messages are written with the Warring type. The example of such record is

shown below:

105
105

Using the UDP protocol, the trojan sends messages in the form of the DKGETMMHOST\r\n

string to the remote server 1.1.1.1:8005, which belongs to the Cloudflare DNS service:

Sending such non-standard messages doesn’t have any practical use and can indicate the

analyzed sample represents a test version of the trojan, and the 1.1.1.1 server address is used as

a temporary plug.

In the response message from the server, BackDoor.Siggen2.3243 searches for the

DKMMHOST: string, followed by the address of the C&C server the trojan needs to connect to. In

addition, in the current directory the backdoor searches for the file whose name is the MD5 hash

of the register.json string. This file should represent a JSON configuration file encoded with

Base64 and containing the parameters needed to connect to the C&C server.

106
106

To communicate with the C&C server, the trojan uses JSON as well. BackDoor.Siggen2.3243 has

the corresponding classes to establish the connection:

· doyou::io::UdpClient

· doyou::io::TcpHttpClient

Artifacts

The malicious library contains the information about the path to the project file:

C:\Users\Administrator\Desktop\Fun\bin\Win32\Release\winsafe.pdb

The following strings can also be found in its body:

BrowseHistory.db

select url, title, last_visit_time, visit_count from urls

title

last_visit_time

visit_count

BrowseHistory::urlChrome, %s, %s

select id, title, last, hit from UserRankUrl

BrowseHistory::urlSogouExplorer,%s, %s

es.sqlite

select url, title, last_visit_date, visit_count from moz_places

last_visit_date

BrowseHistory::urlSogouExplorer, %s

\\2345Explorer\\User Data\\Default\\History

2345Explorer.exe

\\google\\chrome\\User Data\\default\\History

chrome.exe

\\360Chrome\\chrome\\User Data\\default\\History

107
107

360chrome.exe

\\User Data\\default\\History

\\360se6\\User Data\\default\\History

360se.exe

\\Tencent\\QQBrowser\\User Data\\Default\\History

QQBrowser.exe

\\SogouExplorer\\HistoryUrl3.db

SogouExplorer.exe

\\Mozilla\\Firefox\\Profiles

firefox.exe

++ %p s_buff_size = %u mb

-- %p s_buff_size = %u mb

write2socket1:sockfd<%d> client socket closed.

write2socket1:sockfd<%d> nSize<%d> nLast<%d> ret<%d>

sockfd<%d> onClose

warning, initSocket close old socket<%d>...

create socket failed...

<socket=%d> connect <%s:%d> failed...

hostname2ip(hostname is null ptr).

hostname2ip(port is null ptr).

%s getaddrinfo

%s getnameinfo

--\r\n\r\n

Content-Disposition: form-data; name=\"%s\"\r\n\r\n

!_form_data_buf.canWrite(bytesize), url=%s

readsize != bytesize, url=%s

readsize >= 1MB

Content-Disposition: form-data; name=\"%s\"; filename=\"%s\"\r\n

Content-Type: application/octet-stream\r\n\r\n

total %.2f GB (%.2f GB available)

system_hide::CreatePipe

system_hide::CreateProcess

wmic path win32_physicalmedia get SerialNumber

WMIC diskdrive get Name, Manufacturer, Model

LocalData::task_load::PathFileExists, %s

108
108

LocalData::task_load::read.data.empty, %s

LocalData::task_load::CJsonObject.Parse.empty, %s

LocalData::task_add::taskid exists %d

task_cache_init

LocalData::task_cache_init::taskids.IsEmpty()

LocalData::task_cache_init::read.data.empty, taskid=%s

LocalData::task_cache_init::Parse.data.empty, taskid=%s

LocalData::task_cache_init::task_state.empty, taskid=%s

cmd_10050

clipboard_records

cmd_10026

keyboard_records

set_do_scanfs_lasttime

/windows/register failed!

success

register failed!

register c2s!

application/json

Content-Type

/windows/register

token-refresh lost! to register_dev

token-refresh s2c <%d><%s>

token-refresh success! to start pushclient, token=%s

token-refresh failed! to register_dev

token-refresh c2s <%s>

/windows/token-refresh

submit-data warring! e.cmd<%s> != cmd<%s>

submit-data failed! <%s>

submit_data s2c <%s><%s>

submit_data s2c <%s><%d>

submit_data c2s <%p : %p> <%s>

/windows/submit-data

submit-file failed! <%s>

submit_file s2c <%s><%s><%s>

----boundaryb1zYhTI38xpQxBK00

109
109

multipart/form-data; boundary=

upfile

submit_file c2s <%p : %p> <%s><%s>

/windows/submit-file

endFile %s cbFun

remove %s

endFile %s

cmd_99998

message

do cmd_10001

mem_size

sd_sn

sd_model

sd_volume

sd_partitioning

volume

disk_size

file_sys

paration_table

remaining_percent

remaining_size

mac_net

mac_wifi

network

sd_info

camera

microphone

2.0.1

mm_version

cmd_10001

do cmd_10002

cmd_10002

appinfo

GetSoftInfo info.empty()

appname

110
110

version

install_time

install_path

uninstall_path

publisher

do cmd_10014

cmd_10014

all_request

GetBrowsHistory info.empty()

do cmd_10052

cmd_10052

browser_accounts

UserAccHistory info.empty()

{\"local_task\":\"true\",\"data\":{\"instructions\":{\"cmd\":
\"cmd_10018\"}}}

do cmd_10013_log

2ecee968e5\", \"filename\" : \"eb3816e69e6c007b96a09e2ecee968e5\"},
\"extend\" : {\"id\":\"3f056c333f4f7ce015ec02f109454c54\", \"log_id\"
: 2113}}}}

{\"code\":\"policypush\", \"data\" : {\"type\":\"policypush\",
\"createdatetime\" : \"2019 - 07 - 17 15:51 : 00\", \"instructions\"
: {\"cmd\":\"cmd_10013\", \"data\" : {\"path\":\"

Appendix 1. Indicators of compromise

SHA1 hashes

BackDoor.ShadowPad.1

4bba897ee81240b10f9cca41ec010a26586e8c09: TosBtKbd.dll

BackDoor.ShadowPad.3

693f0bd265e7a68b5b98f411ecf1cd3fed3c84af: hpqhvsei.dll

BackDoor.ShadowPad.4

6ad20dade4717656beed296ecd72e35c3c8e6721: WinRAR SFX

111
111

13dda1896509d5a27bce1e2b26fef51707c19503: TosBtKbd.dll

27e8474286382ff8e2de2c49398179f11936c3c5: TosBtKbdLayer.dll

BackDoor.Farfli.122

6a1d928709f46d344f75936519c81137258e287c: RasTls.dll

8638bcebe84be1982c430e05e6bcd72911f36e43: RasTls.dat

5c54429b219614627a925347fa5006935a70d9d7: RasTls.dat decrypted

BackDoor.Farfli.125

736d8e03e40e245d4c812b091b5743fce855a529

BackDoor.PlugX.47

1acc85504c94707ac9c56a0ec23b49c4ca671c8a: fslapi.dll

8f386b29d8d458df67f0a67c4e155827dcee68c9: fslapi.dll

BackDoor.PlugX.48

781831e8343d895aa4d9d95838eddda08a4673d8

Domains

www[.]pneword[.]net

www[.]mongolv[.]com

www[.]arestc[.]net

www[.]icefirebest[.]com

IP

103.43.16[.]183

103.233.98[.]123

107.183.203[.]235

112
112

125.65.40[.]163

144.48.6[.]235

	Table of Contents
	Introduction
	List of detected malware
	Conclusion
	Operating Routine of Discovered Malware Samples
	BackDoor.ShadowPad.1
	BackDoor.ShadowPad.3
	BackDoor.ShadowPad.4
	BackDoor.Farfli.122
	BackDoor.Farfli.125
	BackDoor.Siggen2.3243

	Appendix 1. Indicators of compromise

